Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,250 Bytes
8299bc6 fe64308 8299bc6 fe64308 8299bc6 fe64308 8299bc6 fe64308 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
title: KOSMOS-2.5 Document AI Demo
emoji: π
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 4.44.0
app_file: app.py
pinned: false
license: mit
---
# KOSMOS-2.5 Document AI Demo
This Space demonstrates the capabilities of Microsoft's **KOSMOS-2.5**, a multimodal literate model for machine reading of text-intensive images.
## Features
π₯ **Three powerful modes**:
1. **π Markdown Generation**: Convert document images to clean markdown format
2. **π OCR with Bounding Boxes**: Extract text with precise spatial coordinates and visualization
3. **π¬ Document Q&A**: Ask questions about document content using KOSMOS-2.5 Chat
## What is KOSMOS-2.5?
KOSMOS-2.5 is Microsoft's latest document AI model that excels at understanding text-rich images. It can:
- Generate spatially-aware text blocks with coordinates
- Produce structured markdown output that captures document styles
- Answer questions about document content through the chat variant
The model was pre-trained on 357.4 million text-rich document images and achieves performance comparable to much larger models (1.3B vs 7B parameters) on visual question answering benchmarks.
## Example Use Cases
- **Receipts**: Extract itemized information or ask "What's the total amount?"
- **Forms**: Convert to structured format or query specific fields
- **Articles**: Get clean markdown or ask content-specific questions
- **Screenshots**: Extract UI text or get information about elements
## Model Information
- **Base Model**: [microsoft/kosmos-2.5](https://huggingface.co/microsoft/kosmos-2.5)
- **Chat Model**: [microsoft/kosmos-2.5-chat](https://huggingface.co/microsoft/kosmos-2.5-chat)
- **Paper**: [Kosmos-2.5: A Multimodal Literate Model](https://arxiv.org/abs/2309.11419)
## Note
This is a generative model and may occasionally produce inaccurate results. Please verify outputs for critical applications.
## Citation
```bibtex
@article{lv2023kosmos,
title={Kosmos-2.5: A multimodal literate model},
author={Lv, Tengchao and Huang, Yupan and Chen, Jingye and Cui, Lei and Ma, Shuming and Chang, Yaoyao and Huang, Shaohan and Wang, Wenhui and Dong, Li and Luo, Weiyao and others},
journal={arXiv preprint arXiv:2309.11419},
year={2023}
}
``` |