File size: 11,102 Bytes
fe64308
 
 
 
 
 
 
 
 
 
 
dce53e9
 
 
 
 
 
 
fe64308
d463280
 
 
 
 
 
 
 
 
 
dce53e9
 
 
 
 
 
 
 
 
d463280
 
dce53e9
d463280
 
 
fe64308
d463280
 
 
 
dce53e9
 
 
 
 
 
 
 
 
d463280
 
dce53e9
d463280
 
 
fe64308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c27b8fb
fe64308
 
 
 
d463280
 
fe64308
d463280
fe64308
 
 
 
 
 
c27b8fb
fe64308
 
 
d463280
fe64308
 
 
 
d463280
fe64308
 
 
 
c27b8fb
fe64308
 
 
 
d463280
 
fe64308
d463280
fe64308
 
 
 
 
 
c27b8fb
fe64308
 
 
d463280
fe64308
 
 
 
d463280
fe64308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c27b8fb
fe64308
 
 
 
 
 
d463280
 
fe64308
 
 
d463280
fe64308
 
 
 
 
 
c27b8fb
fe64308
 
 
d463280
fe64308
 
 
 
d463280
fe64308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
680f872
 
 
 
fe64308
 
 
 
 
 
 
 
 
 
 
 
 
 
680f872
 
 
 
fe64308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
680f872
 
 
 
fe64308
 
 
 
 
680f872
 
 
 
fe64308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import spaces
import torch
import gradio as gr
from PIL import Image
from transformers import AutoProcessor, Kosmos2_5ForConditionalGeneration
import re

# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32

# Check if Flash Attention 2 is available
def is_flash_attention_available():
    try:
        import flash_attn
        return True
    except ImportError:
        return False

# Initialize models and processors lazily
base_model = None
base_processor = None
chat_model = None
chat_processor = None

def load_base_model():
    global base_model, base_processor
    if base_model is None:
        base_repo = "microsoft/kosmos-2.5"
        
        # Use Flash Attention 2 if available, otherwise use default attention
        model_kwargs = {
            "device_map": "cuda", 
            "dtype": dtype,
        }
        if is_flash_attention_available():
            model_kwargs["attn_implementation"] = "flash_attention_2"
        
        base_model = Kosmos2_5ForConditionalGeneration.from_pretrained(
            base_repo, 
            **model_kwargs
        )
        base_processor = AutoProcessor.from_pretrained(base_repo)
    return base_model, base_processor

def load_chat_model():
    global chat_model, chat_processor
    if chat_model is None:
        chat_repo = "microsoft/kosmos-2.5-chat"
        
        # Use Flash Attention 2 if available, otherwise use default attention
        model_kwargs = {
            "device_map": "cuda",
            "dtype": dtype,
        }
        if is_flash_attention_available():
            model_kwargs["attn_implementation"] = "flash_attention_2"
        
        chat_model = Kosmos2_5ForConditionalGeneration.from_pretrained(
            chat_repo,
            **model_kwargs
        )
        chat_processor = AutoProcessor.from_pretrained(chat_repo)
    return chat_model, chat_processor

def post_process_ocr(y, scale_height, scale_width, prompt="<ocr>"):
    y = y.replace(prompt, "")
    if "<md>" in prompt:
        return y
    
    pattern = r"<bbox><x_\d+><y_\d+><x_\d+><y_\d+></bbox>"
    bboxs_raw = re.findall(pattern, y)
    lines = re.split(pattern, y)[1:]
    bboxs = [re.findall(r"\d+", i) for i in bboxs_raw]
    bboxs = [[int(j) for j in i] for i in bboxs]
    
    info = ""
    for i in range(len(lines)):
        if i < len(bboxs):
            box = bboxs[i]
            x0, y0, x1, y1 = box
            if not (x0 >= x1 or y0 >= y1):
                x0 = int(x0 * scale_width)
                y0 = int(y0 * scale_height)
                x1 = int(x1 * scale_width)
                y1 = int(y1 * scale_height)
                info += f"{x0},{y0},{x1},{y0},{x1},{y1},{x0},{y1},{lines[i]}\n"
    return info.strip()

@spaces.GPU(duration=120)
def generate_markdown(image):
    if image is None:
        return "Please upload an image."
    
    model, processor = load_base_model()
    
    prompt = "<md>"
    inputs = processor(text=prompt, images=image, return_tensors="pt")
    
    height, width = inputs.pop("height"), inputs.pop("width")
    raw_width, raw_height = image.size
    scale_height = raw_height / height
    scale_width = raw_width / width
    
    inputs = {k: v.to("cuda") if v is not None else None for k, v in inputs.items()}
    inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype)
    
    with torch.no_grad():
        generated_ids = model.generate(
            **inputs,
            max_new_tokens=1024,
        )
    
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
    result = generated_text[0].replace(prompt, "").strip()
    
    return result

@spaces.GPU(duration=120)
def generate_ocr(image):
    if image is None:
        return "Please upload an image.", None
    
    model, processor = load_base_model()
    
    prompt = "<ocr>"
    inputs = processor(text=prompt, images=image, return_tensors="pt")
    
    height, width = inputs.pop("height"), inputs.pop("width")
    raw_width, raw_height = image.size
    scale_height = raw_height / height
    scale_width = raw_width / width
    
    inputs = {k: v.to("cuda") if v is not None else None for k, v in inputs.items()}
    inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype)
    
    with torch.no_grad():
        generated_ids = model.generate(
            **inputs,
            max_new_tokens=1024,
        )
    
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
    
    # Post-process OCR output
    output_text = post_process_ocr(generated_text[0], scale_height, scale_width)
    
    # Create visualization
    from PIL import ImageDraw
    vis_image = image.copy()
    draw = ImageDraw.Draw(vis_image)
    
    lines = output_text.split("\n")
    for line in lines:
        if not line.strip():
            continue
        parts = line.split(",")
        if len(parts) >= 8:
            try:
                coords = list(map(int, parts[:8]))
                draw.polygon(coords, outline="red", width=2)
            except:
                continue
    
    return output_text, vis_image

@spaces.GPU(duration=120)
def generate_chat_response(image, question):
    if image is None:
        return "Please upload an image."
    if not question.strip():
        return "Please ask a question."
    
    model, processor = load_chat_model()
    
    template = "<md>A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {} ASSISTANT:"
    prompt = template.format(question)
    
    inputs = processor(text=prompt, images=image, return_tensors="pt")
    
    height, width = inputs.pop("height"), inputs.pop("width")
    raw_width, raw_height = image.size
    scale_height = raw_height / height
    scale_width = raw_width / width
    
    inputs = {k: v.to("cuda") if v is not None else None for k, v in inputs.items()}
    inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype)
    
    with torch.no_grad():
        generated_ids = model.generate(
            **inputs,
            max_new_tokens=1024,
        )
    
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
    
    # Extract only the assistant's response
    result = generated_text[0]
    if "ASSISTANT:" in result:
        result = result.split("ASSISTANT:")[-1].strip()
    
    return result

# Create Gradio interface
with gr.Blocks(title="KOSMOS-2.5 Document AI Demo", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # KOSMOS-2.5 Document AI Demo
    
    Explore Microsoft's KOSMOS-2.5, a multimodal model for reading text-intensive images! 
    This demo showcases three capabilities:
    
    1. **Markdown Generation**: Convert document images to markdown format
    2. **OCR with Bounding Boxes**: Extract text with spatial coordinates
    3. **Document Q&A**: Ask questions about document content using KOSMOS-2.5 Chat
    
    Upload a document image (receipt, form, article, etc.) and try different tasks!
    """)
    
    with gr.Tabs():
        # Markdown Generation Tab
        with gr.TabItem("πŸ“ Markdown Generation"):
            with gr.Row():
                with gr.Column():
                    md_image = gr.Image(type="pil", label="Upload Document Image")
                    gr.Examples(
                        examples=["https://huggingface.co/microsoft/kosmos-2.5/resolve/main/receipt_00008.png"],
                        inputs=md_image
                    )
                    md_button = gr.Button("Generate Markdown", variant="primary")
                with gr.Column():
                    md_output = gr.Textbox(
                        label="Generated Markdown", 
                        lines=15, 
                        max_lines=20,
                        show_copy_button=True
                    )
        
        # OCR Tab
        with gr.TabItem("πŸ” OCR with Bounding Boxes"):
            with gr.Row():
                with gr.Column():
                    ocr_image = gr.Image(type="pil", label="Upload Document Image")
                    gr.Examples(
                        examples=["https://huggingface.co/microsoft/kosmos-2.5/resolve/main/receipt_00008.png"],
                        inputs=ocr_image
                    )
                    ocr_button = gr.Button("Extract Text with Coordinates", variant="primary")
                with gr.Column():
                    with gr.Row():
                        ocr_text = gr.Textbox(
                            label="Extracted Text with Coordinates", 
                            lines=10,
                            show_copy_button=True
                        )
                        ocr_vis = gr.Image(label="Visualization (Red boxes show detected text)")
        
        # Chat Tab
        with gr.TabItem("πŸ’¬ Document Q&A (Chat)"):
            with gr.Row():
                with gr.Column():
                    chat_image = gr.Image(type="pil", label="Upload Document Image")
                    gr.Examples(
                        examples=["https://huggingface.co/microsoft/kosmos-2.5/resolve/main/receipt_00008.png"],
                        inputs=chat_image
                    )
                    chat_question = gr.Textbox(
                        label="Ask a question about the document",
                        placeholder="e.g., What is the total amount on this receipt?",
                        lines=2
                    )
                    gr.Examples(
                        examples=["What is the total amount on this receipt?", "What items were purchased?", "When was this receipt issued?", "What is the subtotal?"],
                        inputs=chat_question
                    )
                    chat_button = gr.Button("Get Answer", variant="primary")
                with gr.Column():
                    chat_output = gr.Textbox(
                        label="Answer", 
                        lines=8,
                        show_copy_button=True
                    )
    
    # Event handlers
    md_button.click(
        fn=generate_markdown,
        inputs=[md_image],
        outputs=[md_output]
    )
    
    ocr_button.click(
        fn=generate_ocr,
        inputs=[ocr_image],
        outputs=[ocr_text, ocr_vis]
    )
    
    chat_button.click(
        fn=generate_chat_response,
        inputs=[chat_image, chat_question],
        outputs=[chat_output]
    )
    
    # Examples section
    gr.Markdown("""
    ## Example Use Cases:
    - **Receipts**: Extract itemized information or ask about totals
    - **Forms**: Convert to structured format or answer specific questions
    - **Articles**: Get markdown format or ask about content
    - **Screenshots**: Extract text or get information about specific elements
    
    ## Note:
    This is a generative model and may occasionally hallucinate. Results should be verified for accuracy.
    """)

if __name__ == "__main__":
    demo.launch()