Spaces:
Sleeping
Sleeping
File size: 9,411 Bytes
f6f98ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import gradio as gr
import os
import json
import asyncio
import base64
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from handler import AudioLoop
import plotly.express as px
import plotly.graph_objects as go
from typing import Dict, List, Any, Optional, Tuple
# Utility functions for repository analysis and visualization
def analyze_repository_data(repo_data: Dict[str, Any]) -> Dict[str, Any]:
"""
Analyze repository data and prepare metrics for visualization
"""
results = {
"language_stats": {},
"commit_history": [],
"contributor_stats": [],
"code_quality": {},
"issue_stats": {}
}
# This would normally process real data from the Gemini response
# Placeholder data for demonstration
results["language_stats"] = {
"JavaScript": 45,
"Python": 30,
"HTML": 15,
"CSS": 10
}
results["commit_history"] = [
{"date": "2023-01", "commits": 12},
{"date": "2023-02", "commits": 18},
{"date": "2023-03", "commits": 7},
{"date": "2023-04", "commits": 15},
{"date": "2023-05", "commits": 22}
]
results["contributor_stats"] = [
{"name": "User1", "commits": 45, "additions": 2300, "deletions": 1200},
{"name": "User2", "commits": 32, "additions": 1800, "deletions": 900},
{"name": "User3", "commits": 27, "additions": 1500, "deletions": 700}
]
return results
def create_language_pie_chart(language_stats: Dict[str, float]) -> go.Figure:
"""
Create a pie chart for language distribution
"""
labels = list(language_stats.keys())
values = list(language_stats.values())
fig = go.Figure(data=[go.Pie(
labels=labels,
values=values,
hole=.3,
marker_colors=px.colors.sequential.Plasma
)])
fig.update_layout(
title_text="Repository Language Distribution",
showlegend=True,
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
)
return fig
def create_commit_history_chart(commit_history: List[Dict[str, Any]]) -> go.Figure:
"""
Create a line chart for commit history
"""
dates = [item["date"] for item in commit_history]
commits = [item["commits"] for item in commit_history]
fig = go.Figure()
fig.add_trace(go.Scatter(
x=dates,
y=commits,
mode='lines+markers',
name='Commits',
line=dict(color='rgba(75, 0, 130, 0.8)', width=3),
marker=dict(size=8, color='rgba(138, 43, 226, 1)')
))
fig.update_layout(
title="Commit Activity Over Time",
xaxis_title="Month",
yaxis_title="Number of Commits",
template="plotly_dark",
plot_bgcolor='rgba(26, 32, 58, 0.3)',
paper_bgcolor='rgba(26, 32, 58, 0.3)',
font=dict(color='#e0e0e0')
)
return fig
def create_contributors_chart(contributor_stats: List[Dict[str, Any]]) -> go.Figure:
"""
Create a bar chart for contributor statistics
"""
names = [item["name"] for item in contributor_stats]
commits = [item["commits"] for item in contributor_stats]
fig = go.Figure()
fig.add_trace(go.Bar(
x=names,
y=commits,
marker_color='rgba(138, 43, 226, 0.7)',
marker_line_color='rgba(138, 43, 226, 1.0)',
marker_line_width=1.5,
opacity=0.8
))
fig.update_layout(
title="Top Contributors",
xaxis_title="Contributor",
yaxis_title="Number of Commits",
template="plotly_dark",
plot_bgcolor='rgba(26, 32, 58, 0.3)',
paper_bgcolor='rgba(26, 32, 58, 0.3)',
font=dict(color='#e0e0e0')
)
return fig
# Main Gradio application
class GradioRepoAnalysis:
def __init__(self):
self.audio_loop = None
self.current_repo = None
self.analysis_results = None
def init_audio_loop(self):
"""Initialize the AudioLoop from your handler module"""
if self.audio_loop is None:
self.audio_loop = AudioLoop()
# This would normally connect to Gemini API
# For demo purposes, we'll simulate this
async def process_query(self, repo_url: str, query: str) -> Tuple[str, go.Figure, go.Figure, go.Figure]:
"""
Process a user query about a repository and return analysis results
"""
# In a real implementation, this would send the query to Gemini
# and process the response
# For demo purposes, we'll simulate a response
if not repo_url.startswith("https://github.com/"):
return "Please enter a valid GitHub repository URL", None, None, None
if not query:
return "Please enter a query about the repository", None, None, None
# Simulate a delay for processing
await asyncio.sleep(2)
# For demo, we'll generate simulated repository data
repo_name = repo_url.split("/")[-1]
repo_owner = repo_url.split("/")[-2]
repo_data = {
"name": repo_name,
"owner": repo_owner,
"url": repo_url,
# Other simulated data would go here
}
# Analyze the repository data
self.analysis_results = analyze_repository_data(repo_data)
# Create the visualization charts
language_chart = create_language_pie_chart(self.analysis_results["language_stats"])
commit_chart = create_commit_history_chart(self.analysis_results["commit_history"])
contributor_chart = create_contributors_chart(self.analysis_results["contributor_stats"])
# Generate a text response
response = f"Analysis of {repo_owner}/{repo_name}:\n\n"
response += f"This repository is primarily written in {max(self.analysis_results['language_stats'], key=self.analysis_results['language_stats'].get)}, "
response += f"with {sum(item['commits'] for item in self.analysis_results['commit_history'])} commits in the last 5 months. "
response += f"The most active contributor is {self.analysis_results['contributor_stats'][0]['name']} with {self.analysis_results['contributor_stats'][0]['commits']} commits."
return response, language_chart, commit_chart, contributor_chart
def build_interface(self):
"""
Build and launch the Gradio interface
"""
with gr.Blocks(theme=gr.themes.Monochrome()) as interface:
gr.Markdown("# GitHub Repository Analysis with G.E.N.I.E.")
gr.Markdown("Analyze GitHub repositories using natural language queries")
with gr.Row():
with gr.Column(scale=3):
repo_url = gr.Textbox(
label="GitHub Repository URL",
placeholder="https://github.com/owner/repo",
info="Enter the URL of the GitHub repository you want to analyze"
)
query = gr.Textbox(
label="Your Query",
placeholder="What are the main languages used in this repo?",
info="Ask a question about the repository"
)
with gr.Row():
submit_btn = gr.Button("Analyze Repository", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
response = gr.Markdown(label="Analysis Results")
with gr.Column(scale=2):
with gr.Tab("Voice Chat"):
audio_input = gr.Audio(source="microphone", type="numpy", label="Voice Input")
audio_output = gr.Audio(label="G.E.N.I.E. Response")
with gr.Tabs():
with gr.Tab("Language Distribution"):
language_chart = gr.Plot(label="Repository Language Distribution")
with gr.Tab("Commit History"):
commit_chart = gr.Plot(label="Commit Activity Over Time")
with gr.Tab("Contributors"):
contributor_chart = gr.Plot(label="Top Contributors")
# Set up event handlers
submit_btn.click(
fn=lambda repo, q: asyncio.run(self.process_query(repo, q)),
inputs=[repo_url, query],
outputs=[response, language_chart, commit_chart, contributor_chart]
)
clear_btn.click(
fn=lambda: (
"",
"https://github.com/user/repo",
"What are the main languages used in this repo?",
None, None, None
),
inputs=None,
outputs=[response, repo_url, query, language_chart, commit_chart, contributor_chart]
)
return interface
# Initialize and launch the application
def main():
app = GradioRepoAnalysis()
interface = app.build_interface()
interface.launch(share=True)
if __name__ == "__main__":
main()
|