import gradio as gr import os import json import asyncio import base64 import matplotlib.pyplot as plt import numpy as np import pandas as pd from handler import AudioLoop import plotly.express as px import plotly.graph_objects as go from typing import Dict, List, Any, Optional, Tuple # Utility functions for repository analysis and visualization def analyze_repository_data(repo_data: Dict[str, Any]) -> Dict[str, Any]: """ Analyze repository data and prepare metrics for visualization """ results = { "language_stats": {}, "commit_history": [], "contributor_stats": [], "code_quality": {}, "issue_stats": {} } # This would normally process real data from the Gemini response # Placeholder data for demonstration results["language_stats"] = { "JavaScript": 45, "Python": 30, "HTML": 15, "CSS": 10 } results["commit_history"] = [ {"date": "2023-01", "commits": 12}, {"date": "2023-02", "commits": 18}, {"date": "2023-03", "commits": 7}, {"date": "2023-04", "commits": 15}, {"date": "2023-05", "commits": 22} ] results["contributor_stats"] = [ {"name": "User1", "commits": 45, "additions": 2300, "deletions": 1200}, {"name": "User2", "commits": 32, "additions": 1800, "deletions": 900}, {"name": "User3", "commits": 27, "additions": 1500, "deletions": 700} ] return results def create_language_pie_chart(language_stats: Dict[str, float]) -> go.Figure: """ Create a pie chart for language distribution """ labels = list(language_stats.keys()) values = list(language_stats.values()) fig = go.Figure(data=[go.Pie( labels=labels, values=values, hole=.3, marker_colors=px.colors.sequential.Plasma )]) fig.update_layout( title_text="Repository Language Distribution", showlegend=True, legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1) ) return fig def create_commit_history_chart(commit_history: List[Dict[str, Any]]) -> go.Figure: """ Create a line chart for commit history """ dates = [item["date"] for item in commit_history] commits = [item["commits"] for item in commit_history] fig = go.Figure() fig.add_trace(go.Scatter( x=dates, y=commits, mode='lines+markers', name='Commits', line=dict(color='rgba(75, 0, 130, 0.8)', width=3), marker=dict(size=8, color='rgba(138, 43, 226, 1)') )) fig.update_layout( title="Commit Activity Over Time", xaxis_title="Month", yaxis_title="Number of Commits", template="plotly_dark", plot_bgcolor='rgba(26, 32, 58, 0.3)', paper_bgcolor='rgba(26, 32, 58, 0.3)', font=dict(color='#e0e0e0') ) return fig def create_contributors_chart(contributor_stats: List[Dict[str, Any]]) -> go.Figure: """ Create a bar chart for contributor statistics """ names = [item["name"] for item in contributor_stats] commits = [item["commits"] for item in contributor_stats] fig = go.Figure() fig.add_trace(go.Bar( x=names, y=commits, marker_color='rgba(138, 43, 226, 0.7)', marker_line_color='rgba(138, 43, 226, 1.0)', marker_line_width=1.5, opacity=0.8 )) fig.update_layout( title="Top Contributors", xaxis_title="Contributor", yaxis_title="Number of Commits", template="plotly_dark", plot_bgcolor='rgba(26, 32, 58, 0.3)', paper_bgcolor='rgba(26, 32, 58, 0.3)', font=dict(color='#e0e0e0') ) return fig # Main Gradio application class GradioRepoAnalysis: def __init__(self): self.audio_loop = None self.current_repo = None self.analysis_results = None def init_audio_loop(self): """Initialize the AudioLoop from your handler module""" if self.audio_loop is None: self.audio_loop = AudioLoop() # This would normally connect to Gemini API # For demo purposes, we'll simulate this async def process_query(self, repo_url: str, query: str) -> Tuple[str, go.Figure, go.Figure, go.Figure]: """ Process a user query about a repository and return analysis results """ # In a real implementation, this would send the query to Gemini # and process the response # For demo purposes, we'll simulate a response if not repo_url.startswith("https://github.com/"): return "Please enter a valid GitHub repository URL", None, None, None if not query: return "Please enter a query about the repository", None, None, None # Simulate a delay for processing await asyncio.sleep(2) # For demo, we'll generate simulated repository data repo_name = repo_url.split("/")[-1] repo_owner = repo_url.split("/")[-2] repo_data = { "name": repo_name, "owner": repo_owner, "url": repo_url, # Other simulated data would go here } # Analyze the repository data self.analysis_results = analyze_repository_data(repo_data) # Create the visualization charts language_chart = create_language_pie_chart(self.analysis_results["language_stats"]) commit_chart = create_commit_history_chart(self.analysis_results["commit_history"]) contributor_chart = create_contributors_chart(self.analysis_results["contributor_stats"]) # Generate a text response response = f"Analysis of {repo_owner}/{repo_name}:\n\n" response += f"This repository is primarily written in {max(self.analysis_results['language_stats'], key=self.analysis_results['language_stats'].get)}, " response += f"with {sum(item['commits'] for item in self.analysis_results['commit_history'])} commits in the last 5 months. " response += f"The most active contributor is {self.analysis_results['contributor_stats'][0]['name']} with {self.analysis_results['contributor_stats'][0]['commits']} commits." return response, language_chart, commit_chart, contributor_chart def build_interface(self): """ Build and launch the Gradio interface """ with gr.Blocks(theme=gr.themes.Monochrome()) as interface: gr.Markdown("# GitHub Repository Analysis with G.E.N.I.E.") gr.Markdown("Analyze GitHub repositories using natural language queries") with gr.Row(): with gr.Column(scale=3): repo_url = gr.Textbox( label="GitHub Repository URL", placeholder="https://github.com/owner/repo", info="Enter the URL of the GitHub repository you want to analyze" ) query = gr.Textbox( label="Your Query", placeholder="What are the main languages used in this repo?", info="Ask a question about the repository" ) with gr.Row(): submit_btn = gr.Button("Analyze Repository", variant="primary") clear_btn = gr.Button("Clear", variant="secondary") response = gr.Markdown(label="Analysis Results") with gr.Column(scale=2): with gr.Tab("Voice Chat"): audio_input = gr.Audio(source="microphone", type="numpy", label="Voice Input") audio_output = gr.Audio(label="G.E.N.I.E. Response") with gr.Tabs(): with gr.Tab("Language Distribution"): language_chart = gr.Plot(label="Repository Language Distribution") with gr.Tab("Commit History"): commit_chart = gr.Plot(label="Commit Activity Over Time") with gr.Tab("Contributors"): contributor_chart = gr.Plot(label="Top Contributors") # Set up event handlers submit_btn.click( fn=lambda repo, q: asyncio.run(self.process_query(repo, q)), inputs=[repo_url, query], outputs=[response, language_chart, commit_chart, contributor_chart] ) clear_btn.click( fn=lambda: ( "", "https://github.com/user/repo", "What are the main languages used in this repo?", None, None, None ), inputs=None, outputs=[response, repo_url, query, language_chart, commit_chart, contributor_chart] ) return interface # Initialize and launch the application def main(): app = GradioRepoAnalysis() interface = app.build_interface() interface.launch(share=True) if __name__ == "__main__": main()