Spaces:
Configuration error
Configuration error
File size: 31,424 Bytes
f254709 4eb2789 f254709 4eb2789 f254709 4eb2789 f254709 4eb2789 f254709 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 |
# Import Libraries
import os
import gradio as gr
import google.generativeai as genai
import fitz # PyMuPDF
from PIL import Image, ImageEnhance
import io
import re
import json
import numpy as np
import pandas as pd
from datetime import datetime
import base64
# Blood Report Analyzer Implementation
# Configure Google Gemini API
def configure_genai(api_key):
genai.configure(api_key=api_key)
# Use Gemini Pro Vision for image analysis
vision_model = genai.GenerativeModel('gemini-pro-vision')
# Use Gemini Pro for text analysis (better for structured text)
text_model = genai.GenerativeModel('gemini-pro')
return vision_model, text_model
# Image preprocessing to improve OCR
def preprocess_image(image):
# Convert to grayscale
img_gray = image.convert('L')
# Enhance contrast
enhancer = ImageEnhance.Contrast(img_gray)
img_enhanced = enhancer.enhance(2.0)
# Increase sharpness
sharpness = ImageEnhance.Sharpness(img_enhanced)
img_sharp = sharpness.enhance(2.0)
return img_sharp
# Extract text from PDF with advanced techniques
def extract_text_from_pdf(pdf_file):
doc = fitz.open(stream=pdf_file, filetype="pdf")
complete_text = ""
images = []
tables = []
for page_num in range(len(doc)):
page = doc.load_page(page_num)
# Get text with improved layout preservation
text = page.get_text("dict")
blocks = text.get("blocks", [])
# Process text blocks to preserve table-like structures
page_text = ""
for block in blocks:
if block.get("type") == 0: # Text block
for line in block.get("lines", []):
line_text = " ".join([span.get("text", "") for span in line.get("spans", [])])
page_text += line_text + "\n"
complete_text += page_text + "\n\n"
# Extract tables using heuristics
# Look for grid-like structures in the text
table_candidates = re.findall(r'(?:\w+[\t ]+){2,}(?:\d+\.?\d*[\t ]+){2,}', page_text)
if table_candidates:
tables.extend(table_candidates)
# Extract images for visual analysis
image_list = page.get_images(full=True)
for img_index, img in enumerate(image_list):
xref = img[0]
base_image = doc.extract_image(xref)
image_bytes = base_image["image"]
image = Image.open(io.BytesIO(image_bytes))
# Only keep images that might be charts or reports
# (filter out logos and decorative elements)
if image.width > 200 and image.height > 200:
# Preprocess image to improve readability
processed_image = preprocess_image(image)
images.append(processed_image)
return complete_text, images, tables
# Blood markers dictionary for reference
BLOOD_MARKERS = {
"Vitamin D": ["25-OH Vitamin D", "Vitamin D, 25-Hydroxy", "25(OH)D", "Calcidiol"],
"Vitamin B12": ["Cobalamin", "Cyanocobalamin", "Methylcobalamin", "B-12"],
"Folate": ["Vitamin B9", "Folic Acid"],
"Vitamin A": ["Retinol", "Beta-carotene"],
"Vitamin E": ["Tocopherol", "Alpha-tocopherol"],
"Vitamin K": ["Phylloquinone", "Menaquinone"],
"Vitamin C": ["Ascorbic Acid", "L-ascorbic acid"],
"Vitamin B1": ["Thiamine", "Thiamin"],
"Vitamin B2": ["Riboflavin"],
"Vitamin B3": ["Niacin", "Nicotinic acid"],
"Vitamin B5": ["Pantothenic acid"],
"Vitamin B6": ["Pyridoxine", "Pyridoxal", "Pyridoxamine"],
"Vitamin B7": ["Biotin"],
"Iron": ["Ferritin", "Transferrin", "TIBC", "UIBC", "Serum Iron"],
"Calcium": ["Ca", "Serum Calcium", "Ionized Calcium"],
"Magnesium": ["Mg", "Serum Magnesium"],
"Zinc": ["Zn", "Serum Zinc"],
"Selenium": ["Se", "Serum Selenium"],
"Iodine": ["I", "Urinary Iodine"]
}
# Normal ranges reference (based on Indian standards)
REFERENCE_RANGES = {
"Vitamin D": {"unit": "ng/mL", "min": 30, "max": 100,
"deficiency": "<20", "insufficiency": "20-29"},
"Vitamin B12": {"unit": "pg/mL", "min": 211, "max": 911,
"deficiency": "<200", "insufficiency": "200-300"},
"Folate": {"unit": "ng/mL", "min": 5.9, "max": 24.8,
"deficiency": "<5.9"},
"Ferritin": {"unit": "ng/mL", "min_male": 30, "max_male": 400,
"min_female": 13, "max_female": 150,
"deficiency_male": "<30", "deficiency_female": "<13"},
"Hemoglobin": {"unit": "g/dL",
"min_male": 13.5, "max_male": 17.5,
"min_female": 12.0, "max_female": 15.5,
"deficiency_male": "<13.5", "deficiency_female": "<12.0"},
"Calcium": {"unit": "mg/dL", "min": 8.6, "max": 10.3,
"deficiency": "<8.6"},
"Magnesium": {"unit": "mg/dL", "min": 1.7, "max": 2.2,
"deficiency": "<1.7"},
"Zinc": {"unit": "ΞΌg/dL", "min": 70, "max": 120,
"deficiency": "<70"}
}
# Extract blood markers and values from text
def extract_blood_markers(text):
extracted_markers = {}
# Iterate through all known markers and their aliases
for vitamin, aliases in BLOOD_MARKERS.items():
all_terms = aliases + [vitamin]
for term in all_terms:
# Look for the marker and its value
# Pattern matches: Marker name: value unit
# Or: Marker name value unit
pattern = r'(?i)(%s)\s*[:=-]?\s*(\d+\.?\d*)' % re.escape(term)
matches = re.findall(pattern, text)
if matches:
for match in matches:
marker, value = match
# Convert to float if possible
try:
value = float(value)
extracted_markers[vitamin] = value
break # Found a value for this vitamin, move to next
except ValueError:
continue
return extracted_markers
# Analyze report with Gemini using structured approach
def analyze_report(vision_model, text_model, content, extracted_markers, is_text=False):
# Create structured input for better analysis
analysis_prompt = f"""
I need a detailed analysis of this blood test report. Focus specifically on vitamin, mineral and nutritional deficiencies.
The report is from India, so provide recommendations relevant to Indian context, diet, and healthcare practices.
For each identified deficiency:
1. Specify the exact deficiency (vitamin/mineral name)
2. Current level from report and normal reference range
3. Severity (mild/moderate/severe)
4. Recommended daily dosage in appropriate units (mg, mcg, IU) for supplementation
5. Duration of recommended supplementation
6. Specific health impacts this deficiency is causing or may cause
7. Recommended foods available in India that address this deficiency (include both vegetarian and non-vegetarian options)
8. Any additional blood tests that should be considered for confirmation
Also provide:
- A comprehensive summary of all nutritional findings
- Lifestyle modifications specific to Indian context
- Any concerning values that require immediate medical attention
- Follow-up testing recommendations with timeline
If you cannot confidently determine specific deficiencies, explain why and suggest further tests.
The extracted markers I've identified include: {json.dumps(extracted_markers)}
Format your response as structured JSON with the following schema:
{{
"deficiencies": [
{{
"nutrient": "string",
"current_level": "string",
"reference_range": "string",
"severity": "string",
"recommended_dosage": "string",
"supplementation_duration": "string",
"health_impacts": ["string"],
"recommended_foods": {{
"vegetarian": ["string"],
"non_vegetarian": ["string"]
}},
"confirmation_tests": ["string"]
}}
],
"summary": "string",
"lifestyle_modifications": ["string"],
"urgent_concerns": ["string"] or null,
"followup_recommendations": {{
"tests": ["string"],
"timeline": "string"
}}
}}
"""
try:
if is_text:
full_content = content + "\n\nExtracted markers: " + json.dumps(extracted_markers)
response = text_model.generate_content([analysis_prompt, full_content])
else:
# For image, combine extracted markers with the image
response = vision_model.generate_content([analysis_prompt, content])
# Extract JSON from response
response_text = response.text
# Find JSON object in the response
json_match = re.search(r'```json\s*([\s\S]*?)\s*```', response_text)
if json_match:
json_str = json_match.group(1)
else:
# Try to find JSON without code blocks
json_match = re.search(r'({[\s\S]*})', response_text)
if json_match:
json_str = json_match.group(1)
else:
return {"error": "Failed to parse JSON response", "raw_response": response_text}
# Parse JSON
try:
result = json.loads(json_str)
return result
except json.JSONDecodeError:
return {"error": "Invalid JSON response", "raw_response": response_text}
except Exception as e:
return {"error": f"Analysis failed: {str(e)}"}
# Generate personalized recommendation report
def generate_recommendation_html(analysis_result, patient_info=None):
if "error" in analysis_result:
return f"<div class='error'>Error in analysis: {analysis_result['error']}</div>"
# Current date for the report
current_date = datetime.now().strftime("%d %B, %Y")
# Start building HTML
html = f"""
<div style="font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; padding: 20px; line-height: 1.6;">
<div style="text-align: center; border-bottom: 2px solid #2c3e50; padding-bottom: 10px; margin-bottom: 20px;">
<h1 style="color: #2c3e50;">Nutritional Analysis Report</h1>
<p>Generated on: {current_date}</p>
{f"<p>Patient: {patient_info['name']} | Age: {patient_info['age']} | Gender: {patient_info['gender']}</p>" if patient_info else ""}
</div>
<div style="background-color: #f9f9f9; border-left: 4px solid #3498db; padding: 15px; margin-bottom: 25px;">
<h2 style="color: #3498db; margin-top: 0;">Summary</h2>
<p>{analysis_result.get('summary', 'No summary available')}</p>
</div>
"""
# Add deficiencies section
deficiencies = analysis_result.get('deficiencies', [])
if deficiencies:
html += '<h2 style="color: #2c3e50; border-bottom: 1px solid #ddd; padding-bottom: 8px;">Detected Deficiencies</h2>'
for deficiency in deficiencies:
severity_color = {
"mild": "#f39c12",
"moderate": "#e67e22",
"severe": "#c0392b"
}.get(deficiency.get('severity', '').lower(), "#7f8c8d")
html += f"""
<div style="margin-bottom: 30px; background-color: #f8f9fa; border-radius: 5px; padding: 15px; box-shadow: 0 1px 3px rgba(0,0,0,0.1);">
<h3 style="color: {severity_color}; margin-top: 0;">
{deficiency.get('nutrient', 'Unknown')}
<span style="font-size: 0.8em; background-color: {severity_color}; color: white; padding: 3px 8px; border-radius: 3px; margin-left: 10px;">
{deficiency.get('severity', 'Unknown')} deficiency
</span>
</h3>
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 15px; margin-bottom: 15px;">
<div>
<p><strong>Current Level:</strong> {deficiency.get('current_level', 'N/A')}</p>
<p><strong>Reference Range:</strong> {deficiency.get('reference_range', 'N/A')}</p>
<p><strong>Recommended Dosage:</strong> {deficiency.get('recommended_dosage', 'N/A')}</p>
<p><strong>Duration:</strong> {deficiency.get('supplementation_duration', 'N/A')}</p>
</div>
<div>
<p><strong>Health Impacts:</strong></p>
<ul style="margin-top: 5px; padding-left: 20px;">
"""
# Add health impacts
for impact in deficiency.get('health_impacts', ['N/A']):
html += f"<li>{impact}</li>"
html += """
</ul>
</div>
</div>
<div style="margin-top: 15px;">
<h4 style="color: #2c3e50; margin-bottom: 8px;">Recommended Foods</h4>
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 15px;">
<div>
<h5 style="color: #27ae60; margin-bottom: 5px;">Vegetarian Options</h5>
<ul style="margin-top: 5px; padding-left: 20px;">
"""
# Add vegetarian foods
veg_foods = deficiency.get('recommended_foods', {}).get('vegetarian', ['N/A'])
for food in veg_foods:
html += f"<li>{food}</li>"
html += """
</ul>
</div>
<div>
<h5 style="color: #c0392b; margin-bottom: 5px;">Non-Vegetarian Options</h5>
<ul style="margin-top: 5px; padding-left: 20px;">
"""
# Add non-vegetarian foods
non_veg_foods = deficiency.get('recommended_foods', {}).get('non_vegetarian', ['N/A'])
for food in non_veg_foods:
html += f"<li>{food}</li>"
html += """
</ul>
</div>
</div>
</div>
<div style="margin-top: 15px; background-color: #eaf2f8; padding: 10px; border-radius: 4px;">
<h4 style="color: #2980b9; margin-top: 0; margin-bottom: 8px;">Additional Tests</h4>
<ul style="margin-top: 5px; padding-left: 20px;">
"""
# Add confirmation tests
tests = deficiency.get('confirmation_tests', ['None recommended'])
for test in tests:
html += f"<li>{test}</li>"
html += """
</ul>
</div>
</div>
"""
else:
html += '<div style="padding: 15px; background-color: #e8f8f5; border-radius: 5px; margin-bottom: 25px;"><p>No specific deficiencies detected.</p></div>'
# Add lifestyle modifications
lifestyle = analysis_result.get('lifestyle_modifications', [])
if lifestyle:
html += """
<h2 style="color: #2c3e50; border-bottom: 1px solid #ddd; padding-bottom: 8px;">Lifestyle Recommendations</h2>
<div style="background-color: #f2f6fc; padding: 15px; border-radius: 5px; margin-bottom: 25px;">
<ul style="padding-left: 20px;">
"""
for item in lifestyle:
html += f"<li>{item}</li>"
html += """
</ul>
</div>
"""
# Add urgent concerns
urgent = analysis_result.get('urgent_concerns', [])
if urgent and urgent != [None]:
html += """
<h2 style="color: #c0392b; border-bottom: 1px solid #ddd; padding-bottom: 8px;">β οΈ Urgent Considerations</h2>
<div style="background-color: #fdf2f0; padding: 15px; border-radius: 5px; border-left: 4px solid #c0392b; margin-bottom: 25px;">
<ul style="padding-left: 20px;">
"""
for item in urgent:
html += f"<li>{item}</li>"
html += """
</ul>
<p style="margin-top: 10px; font-weight: bold;">Please consult with a healthcare provider promptly regarding these concerns.</p>
</div>
"""
# Add follow-up recommendations
followup = analysis_result.get('followup_recommendations', {})
if followup and followup.get('tests'):
html += f"""
<h2 style="color: #2c3e50; border-bottom: 1px solid #ddd; padding-bottom: 8px;">Follow-up Recommendations</h2>
<div style="background-color: #f9f9f9; padding: 15px; border-radius: 5px; margin-bottom: 25px;">
<p><strong>Timeline:</strong> {followup.get('timeline', 'As advised by your healthcare provider')}</p>
<p><strong>Recommended Tests:</strong></p>
<ul style="padding-left: 20px;">
"""
for test in followup.get('tests', []):
html += f"<li>{test}</li>"
html += """
</ul>
</div>
"""
# Disclaimer
html += """
<div style="border-top: 1px solid #ddd; margin-top: 30px; padding-top: 15px; font-size: 0.9em; color: #7f8c8d;">
<p><strong>Disclaimer:</strong> This analysis is generated by an AI system and should not replace professional medical advice.
Always consult with a healthcare provider before making any changes to your diet, lifestyle, or supplementation regimen.</p>
</div>
</div>
"""
return html
# Calculate nutritional recommendations based on deficiencies
def calculate_recommendations(analysis_result, weight_kg=70, height_cm=165, activity_level="moderate"):
if not analysis_result or "deficiencies" not in analysis_result:
return None
# Basic calculations
bmi = weight_kg / ((height_cm/100) ** 2)
# Activity level multipliers
activity_multipliers = {
"sedentary": 1.2,
"light": 1.375,
"moderate": 1.55,
"active": 1.725,
"very active": 1.9
}
# Calculate basal metabolic rate (BMR) using Mifflin-St Jeor equation
bmr = 10 * weight_kg + 6.25 * height_cm - 5 * 30 + 5 # Assuming age 30 for example
# Calculate total daily energy expenditure
tdee = bmr * activity_multipliers.get(activity_level.lower(), 1.55)
# Create recommendation dictionary
recommendations = {
"anthropometrics": {
"bmi": round(bmi, 1),
"bmi_category": get_bmi_category(bmi),
"estimated_energy_needs": round(tdee)
},
"supplements": []
}
# Process each deficiency
for deficiency in analysis_result["deficiencies"]:
nutrient = deficiency["nutrient"]
severity = deficiency["severity"].lower()
# Extract dosage value and unit
dosage_match = re.search(r'(\d+[\.\d]*)\s*([a-zA-Z]+)', deficiency["recommended_dosage"])
if dosage_match:
amount = float(dosage_match.group(1))
unit = dosage_match.group(2)
# Adjust based on severity
if severity == "severe":
adjusted_amount = amount * 1.2 # 20% higher for severe
elif severity == "mild":
adjusted_amount = amount * 0.9 # 10% lower for mild
else:
adjusted_amount = amount
recommendations["supplements"].append({
"nutrient": nutrient,
"dosage": f"{round(adjusted_amount, 2)} {unit}",
"original_dosage": f"{amount} {unit}",
"severity": severity,
"duration": deficiency["supplementation_duration"],
"frequency": "Daily",
"best_time": get_best_time_for_supplement(nutrient),
"interactions": get_supplement_interactions(nutrient)
})
return recommendations
# Helper functions for recommendations
def get_bmi_category(bmi):
if bmi < 18.5:
return "Underweight"
elif bmi < 25:
return "Normal weight"
elif bmi < 30:
return "Overweight"
else:
return "Obese"
def get_best_time_for_supplement(nutrient):
# Time recommendations based on Indian context
nutrient_lower = nutrient.lower()
if any(term in nutrient_lower for term in ["d", "a", "e", "k"]):
return "With meals containing some fat (lunch or dinner)"
elif "b12" in nutrient_lower:
return "Morning, with breakfast"
elif "iron" in nutrient_lower:
return "On empty stomach, 1 hour before meals with Vitamin C"
elif "calcium" in nutrient_lower:
return "Between meals, avoid taking with iron supplements"
elif "zinc" in nutrient_lower:
return "1-2 hours after meals, not with calcium supplements"
else:
return "As directed by healthcare provider"
def get_supplement_interactions(nutrient):
# Common interactions for Indian medications and supplements
nutrient_lower = nutrient.lower()
if "iron" in nutrient_lower:
return ["Calcium supplements", "Tea/coffee", "Antacids", "Certain antibiotics"]
elif "calcium" in nutrient_lower:
return ["Iron supplements", "Certain antibiotics", "Thyroid medications"]
elif "b12" in nutrient_lower:
return ["Metformin", "Acid-reducing medications", "Colchicine"]
elif "d" in nutrient_lower:
return ["Steroids", "Weight loss medications", "Certain cholesterol medications"]
else:
return []
# File upload handler for Hugging Face
def upload_and_process_file(file, api_key, name, age, gender):
if not api_key:
return "Please enter a valid Google API key", None
try:
if file is None:
return "No file was uploaded", None
# Get file extension
file_extension = file.name.split('.')[-1].lower()
file_content = file.read()
# Process based on file type
if file_extension == 'pdf':
report_text, extracted_images, tables = extract_text_from_pdf(file_content)
extracted_markers = extract_blood_markers(report_text)
vision_model, text_model = configure_genai(api_key)
# If text extraction worked well and we found markers
if len(extracted_markers) > 0:
analysis_result = analyze_report(vision_model, text_model, report_text, extracted_markers, is_text=True)
# If text extraction didn't yield much, use the images
elif extracted_images:
# Use the first image as primary, but include text context
analysis_result = analyze_report(vision_model, text_model,
[report_text, extracted_images[0]],
extracted_markers)
else:
return "Could not extract sufficient data from the PDF. Please try uploading a clearer document.", None
elif file_extension in ['jpg', 'jpeg', 'png']:
img = Image.open(io.BytesIO(file_content))
processed_img = preprocess_image(img)
vision_model, text_model = configure_genai(api_key)
analysis_result = analyze_report(vision_model, text_model, processed_img, {})
else:
return f"Unsupported file format: {file_extension}. Please upload a PDF or image (JPG, PNG).", None
# Create patient info dictionary if provided
patient_info = None
if name or age or gender:
patient_info = {
"name": name,
"age": age,
"gender": gender
}
# Generate HTML report
html_report = generate_recommendation_html(analysis_result, patient_info)
return html_report, analysis_result
except Exception as e:
return f"An error occurred: {str(e)}", None
# Create the Gradio Interface for Hugging Face
def create_interface():
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo")) as app:
gr.Markdown(
"""
# π©Έ Blood Report Analyzer
## Analyze blood test reports for vitamin deficiencies and get personalized recommendations
This application uses Gemini AI to analyze your blood test results and provide detailed insights
on nutritional deficiencies with recommendations tailored to Indian health needs.
"""
)
with gr.Tab("π Report Analysis"):
with gr.Row():
with gr.Column(scale=1):
api_key = gr.Textbox(
label="Google Gemini API Key",
placeholder="Enter your Gemini API key",
type="password"
)
with gr.Accordion("Instructions for Using This Tool", open=False):
gr.Markdown(
"""
## How to Use This Tool
### 1. Prepare Your Report
- Ensure your blood report is clear and readable
- PDF format is preferred
- If using images, ensure good lighting and focus
### 2. Get a Gemini API Key
- Visit [Google AI Studio](https://ai.google.dev/)
- Create an account or sign in
- Navigate to API keys and create a new key
### 3. Upload and Analyze
- Enter your API key in the designated field
- (Optional) Enter patient information for personalized results
- Upload your blood report file
- Click "Analyze Report"
### 4. Review Results
- The analysis will display deficiencies found, their severity, and recommendations
- For personalized supplementation, enter weight, height, and activity level
- Click "Generate Supplement Plan" for customized dosage recommendations
### 5. Share Results
- You can save the HTML report by right-clicking and selecting "Save as"
- Share the results with your healthcare provider
### Important Notes
- This tool is for informational purposes only
- Always consult with healthcare professionals before making health decisions
- Your data is not stored and is only used for analysis
"""
)
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### Patient Information (Optional)")
name = gr.Textbox(label="Name", placeholder="Enter patient name")
with gr.Row():
age = gr.Textbox(label="Age", placeholder="e.g., 35")
gender = gr.Dropdown(label="Gender", choices=["Male", "Female", "Other"], value="Male")
upload_file = gr.File(label="Upload Blood Report")
analyze_button = gr.Button("π Analyze Report", variant="primary")
with gr.Column(scale=2):
output = gr.HTML(label="Analysis Results")
raw_output = gr.JSON(label="Raw Analysis Data", visible=False)
with gr.Row():
with gr.Column():
with gr.Group():
gr.Markdown("### Supplement Recommendations")
with gr.Row():
weight = gr.Number(label="Weight (kg)", value=70)
height = gr.Number(label="Height (cm)", value=165)
activity = gr.Dropdown(
label="Activity Level",
choices=["Sedentary", "Light", "Moderate", "Active", "Very Active"],
value="Moderate"
)
supplement_button = gr.Button("π Generate Supplement Plan")
supplement_output = gr.JSON(label="Personalized Supplement Plan")
# Connect the buttons to functions
analyze_button.click(
fn=upload_and_process_file,
inputs=[upload_file, api_key, name, age, gender],
outputs=[output, raw_output]
)
supplement_button.click(
fn=calculate_recommendations,
inputs=[raw_output, weight, height, activity],
outputs=[supplement_output]
)
with gr.Tab("π About"):
gr.Markdown(
"""
## About Blood Report Analyzer
This tool was developed to help people in India better understand their blood test results,
with a focus on identifying nutritional deficiencies that are common in the Indian population.
### How it Works
1. The tool uses advanced OCR and AI to extract relevant information from your blood report
2. Google's Gemini AI models analyze the data to identify deficiencies
3. Recommendations are tailored to the Indian context, including:
- Locally available foods
- Cultural dietary considerations
- Regional supplementation guidelines
### Privacy & Security
- Your data remains private and is not stored
- Analysis happens in real-time
- API keys are only used for processing and are not saved
### Limitations
- This tool is for informational purposes only
- It does not replace medical advice from healthcare professionals
- Accuracy depends on the quality of the uploaded report
- Some rare deficiencies may not be detected
### Acknowledgements
This application uses Google's Gemini AI models and is built with Gradio for Hugging Face Spaces.
"""
)
return app
# Export the interface
app = create_interface()
# Launch the app
if __name__ == "__main__":
app.launch()
app.launch(share=True) |