import gradio as gr from diffusers import StableDiffusionPipeline import torch import spaces if torch.cuda.is_available(): device = "cuda" else: device = "cpu" model_id = "nikkijiang/sd-pokemon-generator" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32,safety_checker=None).to(device) @spaces.GPU def generate(prompt, negative_prompt): image = pipe( prompt='an official style pokemon :'+prompt, negative_prompt=negative_prompt, height=256, width=256, num_inference_steps=100, guidance_scale=7.5 ).images[0] return image gr.Interface( fn=generate, inputs=[ gr.Textbox(label="description", placeholder="e.g., lovely cat, cute, shining"), gr.Textbox(label="negative_prompt", placeholder="e.g., simple"), ], outputs=gr.Image(type="pil"), title="Custom Pokémon Generator (beta)", description="Enter a prompt to generate your own Pokémon-style character.", ).launch()