Spaces:
Sleeping
Sleeping
File size: 5,730 Bytes
86f7d50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import time
from fastapi import FastAPI
from pydantic import BaseModel
import torch
from transformers import AutoModelForSeq2SeqLM, BitsAndBytesConfig, AutoTokenizer
from IndicTransToolkit.processor import IndicProcessor
import signal
import sys
import uvicorn
BATCH_SIZE = 4
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
quantization = None
def initialize_model_and_tokenizer(ckpt_dir, quantization):
if quantization == "4-bit":
qconfig = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16,
)
elif quantization == "8-bit":
qconfig = BitsAndBytesConfig(
load_in_8bit=True,
bnb_8bit_use_double_quant=True,
bnb_8bit_compute_dtype=torch.bfloat16,
)
else:
qconfig = None
tokenizer = AutoTokenizer.from_pretrained(ckpt_dir, trust_remote_code=True)
model = AutoModelForSeq2SeqLM.from_pretrained(
ckpt_dir,
trust_remote_code=True,
low_cpu_mem_usage=True,
quantization_config=qconfig,
)
if qconfig is None:
model = model.to(DEVICE)
# Only use half precision if CUDA is available
if DEVICE == "cuda" and torch.cuda.is_available():
model.half()
model.eval()
return tokenizer, model
def batch_translate(input_sentences, src_lang, tgt_lang, model, tokenizer, ip):
translations = []
for i in range(0, len(input_sentences), BATCH_SIZE):
batch = input_sentences[i : i + BATCH_SIZE]
# Preprocess the batch and extract entity mappings
batch = ip.preprocess_batch(batch, src_lang=src_lang, tgt_lang=tgt_lang)
# Tokenize the batch and generate input encodings
inputs = tokenizer(
batch,
truncation=True,
padding="longest",
return_tensors="pt",
return_attention_mask=True,
).to(DEVICE)
# Generate translations using the model
with torch.no_grad():
generated_tokens = model.generate(
**inputs,
use_cache=True,
min_length=0,
max_length=256,
num_beams=4,
num_return_sequences=1,
)
# Decode the generated tokens into text
generated_tokens = tokenizer.batch_decode(
generated_tokens,
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
# Postprocess the translations, including entity replacement
translations += ip.postprocess_batch(generated_tokens, lang=tgt_lang)
del inputs
if torch.cuda.is_available():
torch.cuda.empty_cache()
return translations
# en_indic_ckpt_dir = "ai4bharat/indictrans2-en-indic-1B" # ai4bharat/indictrans2-en-indic-dist-200M
en_indic_ckpt_dir = "ai4bharat/indictrans2-en-indic-dist-200M"
en_indic_tokenizer, en_indic_model = initialize_model_and_tokenizer(en_indic_ckpt_dir, quantization)
indic_en_ckpt_dir = "ai4bharat/indictrans2-indic-en-dist-200M"
indic_en_tokenizer, indic_en_model = initialize_model_and_tokenizer(indic_en_ckpt_dir, quantization)
ip = IndicProcessor(inference=True)
app = FastAPI()
class Translate(BaseModel):
input_sentence : str
source_lan : str
target_lang: str
lang_list = [
"eng_Latn", # Latin English
"ben_Beng", # Bengali
"pan_Guru", # Punjabi
"asm_Beng", # Assamese
"gom_Deva", # Konkani
"guj_Gujr", # Gujarati
"hin_Deva", # Hindi
"kan_Knda", # Kannada,
"mal_Mlym", # Malayalam
"ory_Orya", # Odia,
"tam_Taml", # Tamil,
"tel_Telu", # Telugu
]
# post method to translate
@app.post("/api/v1/translate")
def translate(input : Translate):# -> dict[str, Any]:
# start time
start_time = time.time()
if input.source_lan not in lang_list or input.target_lang not in lang_list:
return {
"message" : "Not a valid dialect",
"translation": None
}
model = None
tokenizer = None
if input.target_lang == "eng_Latn":
model = indic_en_model
tokenizer = indic_en_tokenizer
else:
model = en_indic_model
tokenizer = en_indic_tokenizer
translation = batch_translate(
[input.input_sentence], # Note: batch_translate expects a list
src_lang=input.source_lan,
tgt_lang=input.target_lang,
model=model,
tokenizer=tokenizer,
ip=ip # Don't forget to pass the ip parameter
)
# Calculate processing time
end_time = time.time()
processing_time = round(end_time - start_time, 2)
return {
"message" : f"translation processed successfully in {processing_time} seconds",
"translation": translation[0]
}
@app.get("/health")
def health_check():
return {
"status": "healthy",
"gpu_available": torch.cuda.is_available(),
"gpu_count": torch.cuda.device_count() if torch.cuda.is_available() else 0
}
# Signal handler for graceful shutdown
def handle_sigterm(signum, frame):
print("Received SIGTERM signal. Cleaning up models and exiting...")
# Delete models to free GPU memory
global en_indic_tokenizer, en_indic_model, indic_en_tokenizer, indic_en_model
del en_indic_tokenizer, en_indic_model
del indic_en_tokenizer, indic_en_model
if torch.cuda.is_available():
torch.cuda.empty_cache()
sys.exit(0)
# Register the signal handler
signal.signal(signal.SIGTERM, handle_sigterm)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=9000) |