Spaces:
Running
on
Zero
Running
on
Zero
Den Pavloff
commited on
Commit
·
164603c
1
Parent(s):
91eb188
first
Browse files- app.py +212 -0
- requirements.txt +5 -0
- util.py +222 -0
app.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
import sys
|
4 |
+
|
5 |
+
# Fix OMP_NUM_THREADS issue before any imports
|
6 |
+
os.environ["OMP_NUM_THREADS"] = "4"
|
7 |
+
|
8 |
+
# Install dependencies programmatically to avoid conflicts
|
9 |
+
def setup_dependencies():
|
10 |
+
try:
|
11 |
+
# Check if already installed
|
12 |
+
if os.path.exists('/tmp/deps_installed'):
|
13 |
+
return
|
14 |
+
|
15 |
+
print("Installing transformers dev version...")
|
16 |
+
subprocess.check_call([
|
17 |
+
sys.executable, "-m", "pip", "install", "--force-reinstall", "--no-cache-dir",
|
18 |
+
"git+https://github.com/huggingface/transformers.git"
|
19 |
+
])
|
20 |
+
|
21 |
+
# Mark as installed
|
22 |
+
with open('/tmp/deps_installed', 'w') as f:
|
23 |
+
f.write('done')
|
24 |
+
|
25 |
+
except Exception as e:
|
26 |
+
print(f"Dependencies setup error: {e}")
|
27 |
+
|
28 |
+
# Run setup
|
29 |
+
setup_dependencies()
|
30 |
+
|
31 |
+
import spaces
|
32 |
+
import gradio as gr
|
33 |
+
from util import Config, NemoAudioPlayer, KaniModel
|
34 |
+
import numpy as np
|
35 |
+
import torch
|
36 |
+
|
37 |
+
# Get HuggingFace token
|
38 |
+
token_ = os.getenv('HF_TOKEN')
|
39 |
+
|
40 |
+
# Model configurations
|
41 |
+
models_configs = {
|
42 |
+
'Base_pretrained_model': Config(),
|
43 |
+
'Female_voice': Config(
|
44 |
+
model_name='nineninesix/lfm-nano-codec-expresso-ex02-v.0.2',
|
45 |
+
temperature=0.2
|
46 |
+
),
|
47 |
+
'Male_voice': Config(
|
48 |
+
model_name='nineninesix/lfm-nano-codec-expresso-ex01-v.0.1',
|
49 |
+
temperature=0.2
|
50 |
+
)
|
51 |
+
}
|
52 |
+
|
53 |
+
# Global variables for models (loaded once)
|
54 |
+
player = None
|
55 |
+
models = {}
|
56 |
+
|
57 |
+
def initialize_models():
|
58 |
+
"""Initialize models globally to avoid reloading"""
|
59 |
+
global player, models
|
60 |
+
|
61 |
+
if player is None:
|
62 |
+
print("Initializing NeMo Audio Player...")
|
63 |
+
player = NemoAudioPlayer(Config())
|
64 |
+
print("NeMo Audio Player initialized!")
|
65 |
+
|
66 |
+
if not models:
|
67 |
+
print("Loading TTS models...")
|
68 |
+
for model_name, config in models_configs.items():
|
69 |
+
print(f"Loading {model_name}...")
|
70 |
+
models[model_name] = KaniModel(config, player, token_)
|
71 |
+
print(f"{model_name} loaded!")
|
72 |
+
print("All models loaded!")
|
73 |
+
|
74 |
+
@spaces.GPU
|
75 |
+
def generate_speech_gpu(text, model_choice):
|
76 |
+
"""
|
77 |
+
Generate speech from text using the selected model on GPU
|
78 |
+
"""
|
79 |
+
# Initialize models if not already done
|
80 |
+
initialize_models()
|
81 |
+
|
82 |
+
if not text.strip():
|
83 |
+
return None, "Please enter text for speech generation."
|
84 |
+
|
85 |
+
if not model_choice:
|
86 |
+
return None, "Please select a model."
|
87 |
+
|
88 |
+
try:
|
89 |
+
# Check GPU availability
|
90 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
91 |
+
print(f"Using device: {device}")
|
92 |
+
|
93 |
+
# Get selected model
|
94 |
+
selected_model = models[model_choice]
|
95 |
+
|
96 |
+
# Generate audio
|
97 |
+
print(f"Generating speech with {model_choice}...")
|
98 |
+
audio, _ = selected_model.run_model(text)
|
99 |
+
|
100 |
+
# Convert to Gradio format (sample_rate, audio_data)
|
101 |
+
sample_rate = 22050 # Standard sample rate for NeMo
|
102 |
+
print("Speech generation completed!")
|
103 |
+
|
104 |
+
return (sample_rate, audio), f"✅ Audio generated successfully using {model_choice} on {device}"
|
105 |
+
|
106 |
+
except Exception as e:
|
107 |
+
print(f"Error during generation: {str(e)}")
|
108 |
+
return None, f"❌ Error during generation: {str(e)}"
|
109 |
+
|
110 |
+
def validate_input(text, model_choice):
|
111 |
+
"""Quick validation without GPU"""
|
112 |
+
if not text.strip():
|
113 |
+
return "⚠️ Please enter text for speech generation."
|
114 |
+
if not model_choice:
|
115 |
+
return "⚠️ Please select a model."
|
116 |
+
return f"✅ Ready to generate with {model_choice}"
|
117 |
+
|
118 |
+
# Create Gradio interface
|
119 |
+
with gr.Blocks(title="KaniTTS - Text to Speech", theme=gr.themes.Soft()) as demo:
|
120 |
+
gr.Markdown("# 🎤 KaniTTS - Text to Speech with Zero GPU")
|
121 |
+
gr.Markdown("Select a model and enter text to generate high-quality speech")
|
122 |
+
|
123 |
+
with gr.Row():
|
124 |
+
with gr.Column(scale=1):
|
125 |
+
model_dropdown = gr.Dropdown(
|
126 |
+
choices=list(models_configs.keys()),
|
127 |
+
value=list(models_configs.keys())[0],
|
128 |
+
label="Select Model",
|
129 |
+
info="Base - default model, Female - female voice, Male - male voice"
|
130 |
+
)
|
131 |
+
|
132 |
+
text_input = gr.Textbox(
|
133 |
+
label="Enter Text",
|
134 |
+
placeholder="Enter text for speech generation...",
|
135 |
+
lines=3,
|
136 |
+
max_lines=10
|
137 |
+
)
|
138 |
+
|
139 |
+
generate_btn = gr.Button("🎵 Generate Speech", variant="primary", size="lg")
|
140 |
+
|
141 |
+
# Quick validation button (CPU only)
|
142 |
+
validate_btn = gr.Button("🔍 Validate Input", variant="secondary")
|
143 |
+
|
144 |
+
with gr.Column(scale=1):
|
145 |
+
audio_output = gr.Audio(
|
146 |
+
label="Generated Speech",
|
147 |
+
type="numpy"
|
148 |
+
)
|
149 |
+
|
150 |
+
status_text = gr.Textbox(
|
151 |
+
label="Status",
|
152 |
+
interactive=False,
|
153 |
+
value="Ready to generate speech"
|
154 |
+
)
|
155 |
+
|
156 |
+
# GPU generation event
|
157 |
+
generate_btn.click(
|
158 |
+
fn=generate_speech_gpu,
|
159 |
+
inputs=[text_input, model_dropdown],
|
160 |
+
outputs=[audio_output, status_text]
|
161 |
+
)
|
162 |
+
|
163 |
+
# CPU validation event
|
164 |
+
validate_btn.click(
|
165 |
+
fn=validate_input,
|
166 |
+
inputs=[text_input, model_dropdown],
|
167 |
+
outputs=status_text
|
168 |
+
)
|
169 |
+
|
170 |
+
# Update status on input change
|
171 |
+
text_input.change(
|
172 |
+
fn=validate_input,
|
173 |
+
inputs=[text_input, model_dropdown],
|
174 |
+
outputs=status_text
|
175 |
+
)
|
176 |
+
|
177 |
+
# Text examples
|
178 |
+
gr.Markdown("### 📝 Text Examples:")
|
179 |
+
examples = [
|
180 |
+
"Hello! How are you today?",
|
181 |
+
"Welcome to the world of artificial intelligence.",
|
182 |
+
"This is a demonstration of neural text-to-speech synthesis.",
|
183 |
+
"Zero GPU makes high-quality speech generation accessible to everyone!"
|
184 |
+
]
|
185 |
+
|
186 |
+
gr.Examples(
|
187 |
+
examples=examples,
|
188 |
+
inputs=text_input,
|
189 |
+
label="Click on an example to use it"
|
190 |
+
)
|
191 |
+
|
192 |
+
# Information section
|
193 |
+
with gr.Accordion("ℹ️ Model Information", open=False):
|
194 |
+
gr.Markdown("""
|
195 |
+
**Available Models:**
|
196 |
+
- **Base Model**: Default pre-trained model for general use
|
197 |
+
- **Female Voice**: Optimized for female voice characteristics
|
198 |
+
- **Male Voice**: Optimized for male voice characteristics
|
199 |
+
|
200 |
+
**Features:**
|
201 |
+
- Powered by NVIDIA NeMo Toolkit
|
202 |
+
- High-quality 22kHz audio output
|
203 |
+
- Zero GPU acceleration for fast inference
|
204 |
+
- Support for long text sequences
|
205 |
+
""")
|
206 |
+
|
207 |
+
if __name__ == "__main__":
|
208 |
+
demo.launch(
|
209 |
+
server_name="0.0.0.0",
|
210 |
+
server_port=7860,
|
211 |
+
show_error=True
|
212 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.8.0
|
2 |
+
librosa==0.11.0
|
3 |
+
nemo_toolkit[all]==2.4.0
|
4 |
+
numpy==1.26.4
|
5 |
+
gradio>=4.0.0
|
util.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from nemo.collections.tts.models import AudioCodecModel
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
import os
|
6 |
+
|
7 |
+
|
8 |
+
@dataclass
|
9 |
+
class Config:
|
10 |
+
model_name: str = "nineninesix/lfm-nano-codec-tts-exp-4-large-61468-st"
|
11 |
+
audiocodec_name: str = "nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps"
|
12 |
+
device_map: str = "auto"
|
13 |
+
tokeniser_length: int = 64400
|
14 |
+
start_of_text: int = 1
|
15 |
+
end_of_text: int = 2
|
16 |
+
max_new_tokens: int = 2000
|
17 |
+
temperature: float = .6
|
18 |
+
top_p: float = .95
|
19 |
+
repetition_penalty: float = 1.1
|
20 |
+
|
21 |
+
|
22 |
+
class NemoAudioPlayer:
|
23 |
+
def __init__(self, config, text_tokenizer_name: str = None) -> None:
|
24 |
+
self.conf = config
|
25 |
+
print(f"Loading NeMo codec model: {self.conf.audiocodec_name}")
|
26 |
+
|
27 |
+
# Load NeMo codec model
|
28 |
+
self.nemo_codec_model = AudioCodecModel.from_pretrained(
|
29 |
+
self.conf.audiocodec_name
|
30 |
+
).eval()
|
31 |
+
|
32 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
33 |
+
print(f"Moving NeMo codec to device: {self.device}")
|
34 |
+
self.nemo_codec_model.to(self.device)
|
35 |
+
|
36 |
+
self.text_tokenizer_name = text_tokenizer_name
|
37 |
+
if self.text_tokenizer_name:
|
38 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.text_tokenizer_name)
|
39 |
+
|
40 |
+
# Token configuration
|
41 |
+
self.tokeniser_length = self.conf.tokeniser_length
|
42 |
+
self.start_of_text = self.conf.start_of_text
|
43 |
+
self.end_of_text = self.conf.end_of_text
|
44 |
+
self.start_of_speech = self.tokeniser_length + 1
|
45 |
+
self.end_of_speech = self.tokeniser_length + 2
|
46 |
+
self.start_of_human = self.tokeniser_length + 3
|
47 |
+
self.end_of_human = self.tokeniser_length + 4
|
48 |
+
self.start_of_ai = self.tokeniser_length + 5
|
49 |
+
self.end_of_ai = self.tokeniser_length + 6
|
50 |
+
self.pad_token = self.tokeniser_length + 7
|
51 |
+
self.audio_tokens_start = self.tokeniser_length + 10
|
52 |
+
self.codebook_size = 4032
|
53 |
+
|
54 |
+
def output_validation(self, out_ids):
|
55 |
+
"""Validate that output contains required speech tokens"""
|
56 |
+
start_of_speech_flag = self.start_of_speech in out_ids
|
57 |
+
end_of_speech_flag = self.end_of_speech in out_ids
|
58 |
+
|
59 |
+
if not (start_of_speech_flag and end_of_speech_flag):
|
60 |
+
raise ValueError('Special speech tokens not found in output!')
|
61 |
+
|
62 |
+
print("Output validation passed - speech tokens found")
|
63 |
+
|
64 |
+
def get_nano_codes(self, out_ids):
|
65 |
+
"""Extract nano codec tokens from model output"""
|
66 |
+
try:
|
67 |
+
start_a_idx = (out_ids == self.start_of_speech).nonzero(as_tuple=True)[0].item()
|
68 |
+
end_a_idx = (out_ids == self.end_of_speech).nonzero(as_tuple=True)[0].item()
|
69 |
+
except IndexError:
|
70 |
+
raise ValueError('Speech start/end tokens not found!')
|
71 |
+
|
72 |
+
if start_a_idx >= end_a_idx:
|
73 |
+
raise ValueError('Invalid audio codes sequence!')
|
74 |
+
|
75 |
+
audio_codes = out_ids[start_a_idx + 1: end_a_idx]
|
76 |
+
|
77 |
+
if len(audio_codes) % 4:
|
78 |
+
raise ValueError('Audio codes length must be multiple of 4!')
|
79 |
+
|
80 |
+
audio_codes = audio_codes.reshape(-1, 4)
|
81 |
+
|
82 |
+
# Decode audio codes
|
83 |
+
audio_codes = audio_codes - torch.tensor([self.codebook_size * i for i in range(4)])
|
84 |
+
audio_codes = audio_codes - self.audio_tokens_start
|
85 |
+
|
86 |
+
if (audio_codes < 0).sum().item() > 0:
|
87 |
+
raise ValueError('Invalid audio tokens detected!')
|
88 |
+
|
89 |
+
audio_codes = audio_codes.T.unsqueeze(0)
|
90 |
+
len_ = torch.tensor([audio_codes.shape[-1]])
|
91 |
+
|
92 |
+
print(f"Extracted audio codes shape: {audio_codes.shape}")
|
93 |
+
return audio_codes, len_
|
94 |
+
|
95 |
+
def get_text(self, out_ids):
|
96 |
+
"""Extract text from model output"""
|
97 |
+
try:
|
98 |
+
start_t_idx = (out_ids == self.start_of_text).nonzero(as_tuple=True)[0].item()
|
99 |
+
end_t_idx = (out_ids == self.end_of_text).nonzero(as_tuple=True)[0].item()
|
100 |
+
except IndexError:
|
101 |
+
raise ValueError('Text start/end tokens not found!')
|
102 |
+
|
103 |
+
txt_tokens = out_ids[start_t_idx: end_t_idx + 1]
|
104 |
+
text = self.tokenizer.decode(txt_tokens, skip_special_tokens=True)
|
105 |
+
return text
|
106 |
+
|
107 |
+
def get_waveform(self, out_ids):
|
108 |
+
"""Convert model output to audio waveform"""
|
109 |
+
out_ids = out_ids.flatten()
|
110 |
+
print("Starting waveform generation...")
|
111 |
+
|
112 |
+
# Validate output
|
113 |
+
self.output_validation(out_ids)
|
114 |
+
|
115 |
+
# Extract audio codes
|
116 |
+
audio_codes, len_ = self.get_nano_codes(out_ids)
|
117 |
+
audio_codes, len_ = audio_codes.to(self.device), len_.to(self.device)
|
118 |
+
|
119 |
+
print("Decoding audio with NeMo codec...")
|
120 |
+
with torch.inference_mode():
|
121 |
+
reconstructed_audio, _ = self.nemo_codec_model.decode(
|
122 |
+
tokens=audio_codes,
|
123 |
+
tokens_len=len_
|
124 |
+
)
|
125 |
+
output_audio = reconstructed_audio.cpu().detach().numpy().squeeze()
|
126 |
+
|
127 |
+
print(f"Generated audio shape: {output_audio.shape}")
|
128 |
+
|
129 |
+
if self.text_tokenizer_name:
|
130 |
+
text = self.get_text(out_ids)
|
131 |
+
return output_audio, text
|
132 |
+
else:
|
133 |
+
return output_audio, None
|
134 |
+
|
135 |
+
|
136 |
+
class KaniModel:
|
137 |
+
def __init__(self, config, player: NemoAudioPlayer, token: str) -> None:
|
138 |
+
self.conf = config
|
139 |
+
self.player = player
|
140 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
141 |
+
|
142 |
+
print(f"Loading model: {self.conf.model_name}")
|
143 |
+
print(f"Target device: {self.device}")
|
144 |
+
|
145 |
+
# Load model with proper configuration
|
146 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
147 |
+
self.conf.model_name,
|
148 |
+
torch_dtype=torch.bfloat16,
|
149 |
+
device_map=self.conf.device_map,
|
150 |
+
token=token,
|
151 |
+
trust_remote_code=True # May be needed for some models
|
152 |
+
)
|
153 |
+
|
154 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
155 |
+
self.conf.model_name,
|
156 |
+
token=token,
|
157 |
+
trust_remote_code=True
|
158 |
+
)
|
159 |
+
|
160 |
+
print(f"Model loaded successfully on device: {next(self.model.parameters()).device}")
|
161 |
+
|
162 |
+
def get_input_ids(self, text_prompt: str) -> tuple[torch.tensor]:
|
163 |
+
"""Prepare input tokens for the model"""
|
164 |
+
START_OF_HUMAN = self.player.start_of_human
|
165 |
+
END_OF_TEXT = self.player.end_of_text
|
166 |
+
END_OF_HUMAN = self.player.end_of_human
|
167 |
+
|
168 |
+
# Tokenize input text
|
169 |
+
input_ids = self.tokenizer(text_prompt, return_tensors="pt").input_ids
|
170 |
+
|
171 |
+
# Add special tokens
|
172 |
+
start_token = torch.tensor([[START_OF_HUMAN]], dtype=torch.int64)
|
173 |
+
end_tokens = torch.tensor([[END_OF_TEXT, END_OF_HUMAN]], dtype=torch.int64)
|
174 |
+
|
175 |
+
# Concatenate tokens
|
176 |
+
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
|
177 |
+
attention_mask = torch.ones(1, modified_input_ids.shape[1], dtype=torch.int64)
|
178 |
+
|
179 |
+
print(f"Input sequence length: {modified_input_ids.shape[1]}")
|
180 |
+
return modified_input_ids, attention_mask
|
181 |
+
|
182 |
+
def model_request(self, input_ids: torch.tensor, attention_mask: torch.tensor) -> torch.tensor:
|
183 |
+
"""Generate tokens using the model"""
|
184 |
+
input_ids = input_ids.to(self.device)
|
185 |
+
attention_mask = attention_mask.to(self.device)
|
186 |
+
|
187 |
+
print("Starting model generation...")
|
188 |
+
print(f"Generation parameters: max_tokens={self.conf.max_new_tokens}, "
|
189 |
+
f"temp={self.conf.temperature}, top_p={self.conf.top_p}")
|
190 |
+
|
191 |
+
with torch.no_grad():
|
192 |
+
generated_ids = self.model.generate(
|
193 |
+
input_ids=input_ids,
|
194 |
+
attention_mask=attention_mask,
|
195 |
+
max_new_tokens=self.conf.max_new_tokens,
|
196 |
+
do_sample=True,
|
197 |
+
temperature=self.conf.temperature,
|
198 |
+
top_p=self.conf.top_p,
|
199 |
+
repetition_penalty=self.conf.repetition_penalty,
|
200 |
+
num_return_sequences=1,
|
201 |
+
eos_token_id=self.player.end_of_speech,
|
202 |
+
pad_token_id=self.tokenizer.pad_token_id if self.tokenizer.pad_token_id else self.tokenizer.eos_token_id
|
203 |
+
)
|
204 |
+
|
205 |
+
print(f"Generated sequence length: {generated_ids.shape[1]}")
|
206 |
+
return generated_ids.to('cpu')
|
207 |
+
|
208 |
+
def run_model(self, text: str):
|
209 |
+
"""Complete pipeline: text -> tokens -> generation -> audio"""
|
210 |
+
print(f"Processing text: '{text[:50]}{'...' if len(text) > 50 else ''}'")
|
211 |
+
|
212 |
+
# Prepare input
|
213 |
+
input_ids, attention_mask = self.get_input_ids(text)
|
214 |
+
|
215 |
+
# Generate tokens
|
216 |
+
model_output = self.model_request(input_ids, attention_mask)
|
217 |
+
|
218 |
+
# Convert to audio
|
219 |
+
audio, _ = self.player.get_waveform(model_output)
|
220 |
+
|
221 |
+
print("Text-to-speech generation completed successfully!")
|
222 |
+
return audio, text
|