Spaces:
Running
on
Zero
Running
on
Zero
Update util.py
Browse files
util.py
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
import torch
|
|
|
|
|
|
|
| 2 |
from nemo.collections.tts.models import AudioCodecModel
|
| 3 |
from dataclasses import dataclass
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
@@ -59,7 +61,6 @@ class NemoAudioPlayer:
|
|
| 59 |
if not (start_of_speech_flag and end_of_speech_flag):
|
| 60 |
raise ValueError('Special speech tokens not found in output!')
|
| 61 |
|
| 62 |
-
print("Output validation passed - speech tokens found")
|
| 63 |
|
| 64 |
def get_nano_codes(self, out_ids):
|
| 65 |
"""Extract nano codec tokens from model output"""
|
|
@@ -88,8 +89,6 @@ class NemoAudioPlayer:
|
|
| 88 |
|
| 89 |
audio_codes = audio_codes.T.unsqueeze(0)
|
| 90 |
len_ = torch.tensor([audio_codes.shape[-1]])
|
| 91 |
-
|
| 92 |
-
print(f"Extracted audio codes shape: {audio_codes.shape}")
|
| 93 |
return audio_codes, len_
|
| 94 |
|
| 95 |
def get_text(self, out_ids):
|
|
@@ -107,8 +106,7 @@ class NemoAudioPlayer:
|
|
| 107 |
def get_waveform(self, out_ids):
|
| 108 |
"""Convert model output to audio waveform"""
|
| 109 |
out_ids = out_ids.flatten()
|
| 110 |
-
|
| 111 |
-
|
| 112 |
# Validate output
|
| 113 |
self.output_validation(out_ids)
|
| 114 |
|
|
@@ -116,15 +114,12 @@ class NemoAudioPlayer:
|
|
| 116 |
audio_codes, len_ = self.get_nano_codes(out_ids)
|
| 117 |
audio_codes, len_ = audio_codes.to(self.device), len_.to(self.device)
|
| 118 |
|
| 119 |
-
print("Decoding audio with NeMo codec...")
|
| 120 |
with torch.inference_mode():
|
| 121 |
reconstructed_audio, _ = self.nemo_codec_model.decode(
|
| 122 |
tokens=audio_codes,
|
| 123 |
tokens_len=len_
|
| 124 |
)
|
| 125 |
output_audio = reconstructed_audio.cpu().detach().numpy().squeeze()
|
| 126 |
-
|
| 127 |
-
print(f"Generated audio shape: {output_audio.shape}")
|
| 128 |
|
| 129 |
if self.text_tokenizer_name:
|
| 130 |
text = self.get_text(out_ids)
|
|
@@ -175,18 +170,12 @@ class KaniModel:
|
|
| 175 |
# Concatenate tokens
|
| 176 |
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
|
| 177 |
attention_mask = torch.ones(1, modified_input_ids.shape[1], dtype=torch.int64)
|
| 178 |
-
|
| 179 |
-
print(f"Input sequence length: {modified_input_ids.shape[1]}")
|
| 180 |
return modified_input_ids, attention_mask
|
| 181 |
|
| 182 |
def model_request(self, input_ids: torch.tensor, attention_mask: torch.tensor) -> torch.tensor:
|
| 183 |
"""Generate tokens using the model"""
|
| 184 |
input_ids = input_ids.to(self.device)
|
| 185 |
attention_mask = attention_mask.to(self.device)
|
| 186 |
-
|
| 187 |
-
print("Starting model generation...")
|
| 188 |
-
print(f"Generation parameters: max_tokens={self.conf.max_new_tokens}, "
|
| 189 |
-
f"temp={self.conf.temperature}, top_p={self.conf.top_p}")
|
| 190 |
|
| 191 |
with torch.no_grad():
|
| 192 |
generated_ids = self.model.generate(
|
|
@@ -201,14 +190,10 @@ class KaniModel:
|
|
| 201 |
eos_token_id=self.player.end_of_speech,
|
| 202 |
pad_token_id=self.tokenizer.pad_token_id if self.tokenizer.pad_token_id else self.tokenizer.eos_token_id
|
| 203 |
)
|
| 204 |
-
|
| 205 |
-
print(f"Generated sequence length: {generated_ids.shape[1]}")
|
| 206 |
return generated_ids.to('cpu')
|
| 207 |
|
| 208 |
def run_model(self, text: str):
|
| 209 |
-
"""Complete pipeline: text -> tokens -> generation -> audio"""
|
| 210 |
-
print(f"Processing text: '{text[:50]}{'...' if len(text) > 50 else ''}'")
|
| 211 |
-
|
| 212 |
# Prepare input
|
| 213 |
input_ids, attention_mask = self.get_input_ids(text)
|
| 214 |
|
|
@@ -217,6 +202,50 @@ class KaniModel:
|
|
| 217 |
|
| 218 |
# Convert to audio
|
| 219 |
audio, _ = self.player.get_waveform(model_output)
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import librosa
|
| 3 |
+
import requests
|
| 4 |
from nemo.collections.tts.models import AudioCodecModel
|
| 5 |
from dataclasses import dataclass
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
| 61 |
if not (start_of_speech_flag and end_of_speech_flag):
|
| 62 |
raise ValueError('Special speech tokens not found in output!')
|
| 63 |
|
|
|
|
| 64 |
|
| 65 |
def get_nano_codes(self, out_ids):
|
| 66 |
"""Extract nano codec tokens from model output"""
|
|
|
|
| 89 |
|
| 90 |
audio_codes = audio_codes.T.unsqueeze(0)
|
| 91 |
len_ = torch.tensor([audio_codes.shape[-1]])
|
|
|
|
|
|
|
| 92 |
return audio_codes, len_
|
| 93 |
|
| 94 |
def get_text(self, out_ids):
|
|
|
|
| 106 |
def get_waveform(self, out_ids):
|
| 107 |
"""Convert model output to audio waveform"""
|
| 108 |
out_ids = out_ids.flatten()
|
| 109 |
+
|
|
|
|
| 110 |
# Validate output
|
| 111 |
self.output_validation(out_ids)
|
| 112 |
|
|
|
|
| 114 |
audio_codes, len_ = self.get_nano_codes(out_ids)
|
| 115 |
audio_codes, len_ = audio_codes.to(self.device), len_.to(self.device)
|
| 116 |
|
|
|
|
| 117 |
with torch.inference_mode():
|
| 118 |
reconstructed_audio, _ = self.nemo_codec_model.decode(
|
| 119 |
tokens=audio_codes,
|
| 120 |
tokens_len=len_
|
| 121 |
)
|
| 122 |
output_audio = reconstructed_audio.cpu().detach().numpy().squeeze()
|
|
|
|
|
|
|
| 123 |
|
| 124 |
if self.text_tokenizer_name:
|
| 125 |
text = self.get_text(out_ids)
|
|
|
|
| 170 |
# Concatenate tokens
|
| 171 |
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
|
| 172 |
attention_mask = torch.ones(1, modified_input_ids.shape[1], dtype=torch.int64)
|
|
|
|
|
|
|
| 173 |
return modified_input_ids, attention_mask
|
| 174 |
|
| 175 |
def model_request(self, input_ids: torch.tensor, attention_mask: torch.tensor) -> torch.tensor:
|
| 176 |
"""Generate tokens using the model"""
|
| 177 |
input_ids = input_ids.to(self.device)
|
| 178 |
attention_mask = attention_mask.to(self.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
with torch.no_grad():
|
| 181 |
generated_ids = self.model.generate(
|
|
|
|
| 190 |
eos_token_id=self.player.end_of_speech,
|
| 191 |
pad_token_id=self.tokenizer.pad_token_id if self.tokenizer.pad_token_id else self.tokenizer.eos_token_id
|
| 192 |
)
|
|
|
|
|
|
|
| 193 |
return generated_ids.to('cpu')
|
| 194 |
|
| 195 |
def run_model(self, text: str):
|
| 196 |
+
"""Complete pipeline: text -> tokens -> generation -> audio"""
|
|
|
|
|
|
|
| 197 |
# Prepare input
|
| 198 |
input_ids, attention_mask = self.get_input_ids(text)
|
| 199 |
|
|
|
|
| 202 |
|
| 203 |
# Convert to audio
|
| 204 |
audio, _ = self.player.get_waveform(model_output)
|
| 205 |
+
return audio, text
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
class Demo:
|
| 209 |
+
def __init__(self):
|
| 210 |
+
self.audio_dir = './audio_examples'
|
| 211 |
+
os.makedirs(self.audio_dir, exist_ok=True)
|
| 212 |
+
self.sentences = [
|
| 213 |
+
"You make my days brighter, and my wildest dreams feel like reality. How do you do that?",
|
| 214 |
+
"Anyway, um, so, um, tell me, tell me all about her. I mean, what's she like? Is she really, you know, pretty?",
|
| 215 |
+
"Great, and just a couple quick questions so we can match you with the right buyer. Is your home address still 330 East Charleston Road?",
|
| 216 |
+
"No, that does not make you a failure. No, sweetie, no. It just, uh, it just means that you're having a tough time...",
|
| 217 |
+
"Oh, yeah. I mean did you want to get a quick snack together or maybe something before you go?",
|
| 218 |
+
"I-- Oh, I am such an idiot sometimes. I'm so sorry. Um, I-I don't know where my head's at.",
|
| 219 |
+
"Got it. $300,000. I can definitely help you get a very good price for your property by selecting a realtor.",
|
| 220 |
+
"Holy fu- Oh my God! Don't you understand how dangerous it is, huh?"
|
| 221 |
+
]
|
| 222 |
+
self.urls = [
|
| 223 |
+
'https://www.nineninesix.ai/examples/kani/1.wav',
|
| 224 |
+
'https://www.nineninesix.ai/examples/kani/2.wav',
|
| 225 |
+
'https://www.nineninesix.ai/examples/kani/5.wav',
|
| 226 |
+
'https://www.nineninesix.ai/examples/kani/6.wav',
|
| 227 |
+
'https://www.nineninesix.ai/examples/kani/3.wav',
|
| 228 |
+
'https://www.nineninesix.ai/examples/kani/7.wav',
|
| 229 |
+
'https://www.nineninesix.ai/examples/kani/4.wav',
|
| 230 |
+
'https://www.nineninesix.ai/examples/kani/8.wav'
|
| 231 |
+
]
|
| 232 |
+
|
| 233 |
+
def download_audio(self, url: str, filename: str):
|
| 234 |
+
filepath = os.path.join(self.audio_dir, filename)
|
| 235 |
+
if not os.path.exists(filepath):
|
| 236 |
+
r = requests.get(url)
|
| 237 |
+
r.raise_for_status()
|
| 238 |
+
with open(filepath, 'wb') as f:
|
| 239 |
+
f.write(r.content)
|
| 240 |
+
return filepath
|
| 241 |
+
|
| 242 |
+
def get_audio(self, filepath: str):
|
| 243 |
+
return librosa.load(filepath, sr=22050)
|
| 244 |
+
|
| 245 |
+
def __call__(self):
|
| 246 |
+
examples = {}
|
| 247 |
+
for idx, (sentence, url) in enumerate(zip(self.sentences, self.urls), start=1):
|
| 248 |
+
filename = f"{idx}.wav"
|
| 249 |
+
filepath = self.download_audio(url, filename)
|
| 250 |
+
examples[sentence] = self.get_audio(filepath)
|
| 251 |
+
return examples
|