Den Pavloff commited on
Commit
8a1b058
·
1 Parent(s): f97fc67

fix token conflict

Browse files
Files changed (2) hide show
  1. CLAUDE.md +103 -0
  2. util.py +15 -7
CLAUDE.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # CLAUDE.md
2
+
3
+ This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
4
+
5
+ ## Project Overview
6
+
7
+ KaniTTS is a Text-to-Speech system that uses causal language models to generate speech via NeMo audio codec tokens. The project is deployed as a HuggingFace Gradio Space.
8
+
9
+ ## Running the Application
10
+
11
+ ```bash
12
+ # Run the Gradio app (launches on http://0.0.0.0:7860)
13
+ python app.py
14
+ ```
15
+
16
+ The app requires a HuggingFace token set as the `HF_TOKEN` environment variable to download models.
17
+
18
+ ## Architecture
19
+
20
+ ### Token Flow Pipeline
21
+
22
+ The system uses a custom token layout that interleaves text and audio in a single sequence:
23
+
24
+ 1. **Input prompt construction** (`KaniModel.get_input_ids`):
25
+ - `START_OF_HUMAN` → text tokens → `END_OF_TEXT` → `END_OF_HUMAN`
26
+ - Optionally prefixed with speaker ID (e.g., "andrew: Hello world")
27
+
28
+ 2. **LLM generation** (`KaniModel.model_request`):
29
+ - Model generates sequence containing: text section + `START_OF_SPEECH` + audio codec tokens + `END_OF_SPEECH`
30
+
31
+ 3. **Audio decoding** (`NemoAudioPlayer.get_waveform`):
32
+ - Extracts audio tokens between `START_OF_SPEECH` and `END_OF_SPEECH`
33
+ - Audio tokens are arranged in 4 interleaved codebooks (q=4)
34
+ - Tokens are offset by `audio_tokens_start + (codebook_size * codebook_index)`
35
+ - NeMo codec reconstructs waveform from the 4 codebooks
36
+
37
+ ### Key Classes
38
+
39
+ **`NemoAudioPlayer`** (util.py:27-170)
40
+ - Loads NeMo AudioCodecModel for waveform reconstruction
41
+ - Manages special token IDs (derived from `tokeniser_length` base)
42
+ - Validates output has required speech markers
43
+ - Extracts and decodes 4-codebook audio tokens from LLM output
44
+ - Returns 22050 Hz audio as NumPy array
45
+
46
+ **`KaniModel`** (util.py:172-303)
47
+ - Wraps HuggingFace causal LM (loaded with bfloat16, auto device mapping)
48
+ - Prepares prompts with conversation/modality control tokens
49
+ - Runs generation with sampling parameters (temp, top_p, repetition_penalty)
50
+ - Delegates audio reconstruction to `NemoAudioPlayer`
51
+ - Returns tuple: (audio_array, text, timing_report)
52
+
53
+ **`InitModels`** (util.py:305-343)
54
+ - Factory that loads all models from `model_config.yaml` at startup
55
+ - Returns dict mapping model names to `KaniModel` instances
56
+ - All models share the same `NemoAudioPlayer` instance
57
+
58
+ **`Examples`** (util.py:345-387)
59
+ - Converts `examples.yaml` structure into Gradio Examples format
60
+ - Output order: `[text, model, speaker_id, temperature, top_p, repetition_penalty, max_len]`
61
+
62
+ ### Configuration Files
63
+
64
+ **`model_config.yaml`**
65
+ - `nemo_player`: NeMo codec config (model name, token layout constants)
66
+ - `models`: Dict of available TTS models with device_map and optional speaker_id mappings
67
+
68
+ **`examples.yaml`**
69
+ - List of example prompts with associated parameters for Gradio UI
70
+
71
+ ### Dependency Setup
72
+
73
+ `create_env.py` runs before imports in `app.py` to:
74
+ - Install transformers from git main branch (required for compatibility)
75
+ - Set `OMP_NUM_THREADS=4`
76
+ - Uses `/tmp/deps_installed` marker to avoid reinstalling on every run
77
+
78
+ ## Important Token Constants
79
+
80
+ All special tokens are defined relative to `tokeniser_length` (64400):
81
+ - `start_of_speech = tokeniser_length + 1`
82
+ - `end_of_speech = tokeniser_length + 2`
83
+ - `start_of_human = tokeniser_length + 3`
84
+ - `end_of_human = tokeniser_length + 4`
85
+ - `start_of_ai = tokeniser_length + 5`
86
+ - `end_of_ai = tokeniser_length + 6`
87
+ - `pad_token = tokeniser_length + 7`
88
+ - `audio_tokens_start = tokeniser_length + 10`
89
+ - `codebook_size = 4032`
90
+
91
+ ## Multi-Speaker Support
92
+
93
+ Models with `speaker_id` mappings in `model_config.yaml` support voice selection:
94
+ - Speaker IDs are prefixed to the text prompt (e.g., "andrew: Hello")
95
+ - The Gradio UI shows/hides speaker dropdown based on selected model
96
+ - Base models (v.0.1, v.0.2) generate random voices without speaker control
97
+
98
+ ## HuggingFace Spaces Deployment
99
+
100
+ The README.md header contains HF Spaces metadata:
101
+ - `sdk: gradio` with version 5.46.0
102
+ - `app_file: app.py` as entrypoint
103
+ - References 3 model checkpoints and the NeMo codec
util.py CHANGED
@@ -215,18 +215,26 @@ class KaniModel:
215
  print(f"Target device: {self.device}")
216
 
217
  # Load model with proper configuration
 
 
 
 
 
 
 
 
218
  self.model = AutoModelForCausalLM.from_pretrained(
219
  self.conf.model_name,
220
- dtype=torch.bfloat16,
221
- device_map=self.conf.device_map,
222
- token=self.hf_token,
223
- trust_remote_code=True # May be needed for some models
224
  )
225
 
 
 
 
 
226
  self.tokenizer = AutoTokenizer.from_pretrained(
227
- self.conf.model_name,
228
- token=self.hf_token,
229
- trust_remote_code=True
230
  )
231
 
232
  print(f"Model loaded successfully on device: {next(self.model.parameters()).device}")
 
215
  print(f"Target device: {self.device}")
216
 
217
  # Load model with proper configuration
218
+ load_kwargs = {
219
+ "dtype": torch.bfloat16,
220
+ "device_map": self.conf.device_map,
221
+ "trust_remote_code": True
222
+ }
223
+ if self.hf_token:
224
+ load_kwargs["token"] = self.hf_token
225
+
226
  self.model = AutoModelForCausalLM.from_pretrained(
227
  self.conf.model_name,
228
+ **load_kwargs
 
 
 
229
  )
230
 
231
+ tokenizer_kwargs = {"trust_remote_code": True}
232
+ if self.hf_token:
233
+ tokenizer_kwargs["token"] = self.hf_token
234
+
235
  self.tokenizer = AutoTokenizer.from_pretrained(
236
+ self.conf.model_name,
237
+ **tokenizer_kwargs
 
238
  )
239
 
240
  print(f"Model loaded successfully on device: {next(self.model.parameters()).device}")