File size: 3,459 Bytes
9b5b26a
 
 
 
c19d193
6aae614
8fe992b
9b5b26a
 
5df72d6
9b5b26a
074b7c1
9b5b26a
a718402
9b5b26a
a718402
 
9b5b26a
a718402
 
 
 
 
 
 
9b5b26a
a718402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
ae7a494
 
 
 
e121372
a718402
 
 
 
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
a718402
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool

from Gradio_UI import GradioUI

# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def resume_optimizer_tool(resume_text:str, jd_text:int)-> str: #it's import to specify the return type
    #Keep this format for the description / args / args description but feel free to modify the tool
    """Uses an LLM to optimize the resume based on the Job Description 
    Args:
        resume_text: User's resume in plaintext
        jd_text: Job Description in plaintext
    """
    return f"""
    [TASK]
    You are a Career Advisor. Your job is to:
    1. Compare the resume and job description
    2. Identify skill/terminology gaps
    3. Suggest improvements to align resume better
    4. Rewrite key sections if needed using professional, clear language.

    [RESUME]:
    {resume_text}

    [JOB DESCRIPTION]:
    {jd_text}

    OUTPUT FORMAT]
    - Missing Keywords:
    - Suggested Additions:
    - Improved Resume Section:

    Start with Missing Keywords.
    """ 

@tool
def project_suggestor(domain: str) -> str:
    """
    A tool that suggests good resume projects based on the domain. Uses an LLM to suggest high-impact AI/ML project ideas for any domain.
    Args:
        domain: The domain of interest (e.g., 'mental health', 'agriculture', 'ecommerce', etc.)
    """
    return f"""
     [TASK]
    You are an AI mentor. Suggest 3 innovative, resume-grade AI/ML project ideas in the domain of: {domain}

    The projects should:
    - Be feasible for a single developer or student
    - Include a practical use-case
    - Be unique, not generic

    Output in numbered list.
    """
    
@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
    max_tokens=2096,
    temperature=0.5,
    model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
    custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer, resume_optimizer_tool, project_suggestor], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()