nismamjad's picture
Update app.py
00aeb49 verified
import gradio as gr
from datasets import load_dataset, Dataset
from datetime import datetime, date
import io
import os
from PIL import Image, ImageDraw, ImageFont
from huggingface_hub import login
import requests
import json
import base64
import re # For advanced string cleaning
import time
import pandas as pd # For spreadsheet handling
from io import StringIO # For capturing print output from exec
# Attempt to login using environment token
try:
HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
print("Logged in to Hugging Face Hub successfully.")
else:
print("HUGGINGFACE_TOKEN environment variable not set.")
except Exception as e:
print(f"Error logging in to Hugging Face Hub: {e}")
# Constants for Certificate Generation
SCORES_DATASET = "agents-course/unit4-students-scores"
CERTIFICATES_DATASET = "agents-course/course-certificates-of-excellence"
THRESHOLD_SCORE = 30
# --- Constants for GAIA Benchmark API ---
GAIA_API_BASE_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Constants for Gemini API ---
GEMINI_API_URL_BASE = "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent"
# --- Functions for Certificate Generation (existing code) ---
def check_user_score(username):
try:
score_data = load_dataset(SCORES_DATASET, split="train", download_mode="force_redownload", token=HF_TOKEN if HF_TOKEN else True)
matches = [row for row in score_data if row["username"] == username]
return matches[0] if matches else None
except Exception as e:
print(f"Error checking user score: {e}")
return None
def has_certificate_entry(username):
try:
cert_data = load_dataset(CERTIFICATES_DATASET, split="train", download_mode="force_redownload", token=HF_TOKEN if HF_TOKEN else True)
return any(row["username"] == username for row in cert_data)
except Exception as e:
print(f"Error checking certificate entry: {e}")
return False
def add_certificate_entry(username, name, score):
try:
ds = load_dataset(CERTIFICATES_DATASET, split="train", download_mode="force_redownload", token=HF_TOKEN if HF_TOKEN else True)
filtered_rows = [row for row in ds if row["username"] != username]
new_entry = {
"username": username,
"score": score,
"name_on_certificate": name,
"timestamp": datetime.now().isoformat()
}
filtered_rows.append(new_entry)
updated_ds = Dataset.from_list(filtered_rows)
updated_ds.push_to_hub(CERTIFICATES_DATASET, token=HF_TOKEN if HF_TOKEN else None)
print(f"Certificate entry added/updated for {username}.")
except Exception as e:
print(f"Error adding certificate entry: {e}")
def generate_certificate_image(name_on_cert):
try:
current_dir = os.path.dirname(__file__)
certificate_template_path = os.path.join(current_dir, "certificate.png")
font_path = os.path.join(current_dir, "Quattrocento-Regular.ttf")
if not os.path.exists(certificate_template_path):
alt_cert_path_templates_parent = os.path.join(current_dir,"..", "templates", "certificate.png")
alt_cert_path_root = os.path.join(current_dir, "certificate.png")
if os.path.exists(alt_cert_path_templates_parent):
certificate_template_path = alt_cert_path_templates_parent
elif os.path.exists(alt_cert_path_root):
certificate_template_path = alt_cert_path_root
else:
raise FileNotFoundError(f"Certificate template not found. Checked default, ../templates/, and root relative to app.py.")
if not os.path.exists(font_path):
alt_font_path_parent = os.path.join(current_dir, "..","Quattrocento-Regular.ttf")
alt_font_path_root = os.path.join(current_dir, "Quattrocento-Regular.ttf")
if os.path.exists(alt_font_path_parent):
font_path = alt_font_path_parent
elif os.path.exists(alt_font_path_root):
font_path = alt_font_path_root
else:
raise FileNotFoundError(f"Font file not found. Checked default and parent directory relative to app.py.")
im = Image.open(certificate_template_path)
d = ImageDraw.Draw(im)
name_font = ImageFont.truetype(font_path, 100)
date_font = ImageFont.truetype(font_path, 48)
name_on_cert = name_on_cert.title()
d.text((1000, 740), name_on_cert, fill="black", anchor="mm", font=name_font)
d.text((1480, 1170), str(date.today()), fill="black", anchor="mm", font=date_font)
pdf_buffer = io.BytesIO()
im.convert("RGB").save(pdf_buffer, format="PDF")
pdf_buffer.seek(0)
return im, pdf_buffer
except FileNotFoundError as fnf_error:
print(fnf_error)
raise
except Exception as e:
print(f"Error generating certificate image: {e}")
raise
def handle_certificate(name_on_certificate_input, profile: gr.OAuthProfile):
if not profile:
return "You must be logged in with your Hugging Face account.", None, None
username = profile.username
if not name_on_certificate_input.strip():
return "Please enter the name you want on the certificate.", None, None
user_score_info = check_user_score(username)
if not user_score_info:
return f"No score found for {username}. Please complete Unit 4 first by submitting your agent's answers.", None, None
score = user_score_info.get("score", 0)
if score < THRESHOLD_SCORE:
return f"Your score is {score}. You need at least {THRESHOLD_SCORE} to pass and receive a certificate.", None, None
try:
certificate_image, pdf_bytesio_object = generate_certificate_image(name_on_certificate_input)
add_certificate_entry(username, name_on_certificate_input, score)
temp_pdf_path = f"certificate_{username}.pdf"
with open(temp_pdf_path, "wb") as f:
f.write(pdf_bytesio_object.getvalue())
return f"Congratulations, {name_on_certificate_input}! You scored {score}. Here's your certificate:", certificate_image, temp_pdf_path
except FileNotFoundError as e:
return f"Critical error: A required file for certificate generation was not found: {e}. Please check Space file structure.", None, None
except Exception as e:
print(f"An unexpected error occurred in handle_certificate: {e}")
return "An unexpected error occurred while generating your certificate. Please try again later.", None, None
# --- Functions for GAIA Benchmark Interaction ---
def get_gaia_api_questions():
try:
questions_url = f"{GAIA_API_BASE_URL}/questions"
print(f"Attempting to fetch questions from: {questions_url}")
response = requests.get(questions_url, timeout=30)
response.raise_for_status()
return response.json(), None
except requests.exceptions.RequestException as e:
print(f"Error fetching GAIA questions: {e}")
return None, f"Error fetching GAIA questions: {e}"
except Exception as e:
print(f"An unexpected error occurred while fetching questions: {e}")
return None, f"An unexpected error occurred: {e}"
def get_gaia_file_data_for_task(task_id_for_file_fetch, associated_file_metadata_list):
file_url = f"{GAIA_API_BASE_URL}/files/{task_id_for_file_fetch}"
print(f"Attempting to fetch file for task {task_id_for_file_fetch} from {file_url}")
try:
response = requests.get(file_url, timeout=30)
response.raise_for_status()
raw_bytes = response.content
detected_mime_type = response.headers.get('Content-Type', '').split(';')[0].strip()
file_name = "attached_file" # Default
if associated_file_metadata_list and isinstance(associated_file_metadata_list, list) and len(associated_file_metadata_list) > 0:
first_file_meta = associated_file_metadata_list[0]
if isinstance(first_file_meta, dict) and 'file_name' in first_file_meta:
file_name = first_file_meta['file_name']
print(f"File fetched for task {task_id_for_file_fetch}. Mime-type: {detected_mime_type}, Name: {file_name}, Size: {len(raw_bytes)} bytes")
return raw_bytes, detected_mime_type, file_name
except requests.exceptions.HTTPError as http_err:
if http_err.response.status_code == 404:
print(f"No file found (404) for task {task_id_for_file_fetch} at {file_url}.")
else:
print(f"HTTP error fetching file for task {task_id_for_file_fetch}: {http_err}")
return None, None, None
except requests.exceptions.RequestException as e:
print(f"Could not fetch file for task {task_id_for_file_fetch}: {e}. Proceeding without file content.")
return None, None, None
except Exception as e_gen:
print(f"Unexpected error fetching file for task {task_id_for_file_fetch}: {e_gen}")
return None, None, None
def execute_python_code(code_string: str):
"""
Safely executes a string of Python code and captures its standard output.
Returns the captured output or an error message.
"""
print(f"Attempting to execute Python code:\n{code_string[:500]}...") # Log first 500 chars
# Create a new StringIO object to capture stdout
old_stdout = sys.stdout
sys.stdout = captured_output = StringIO()
execution_result = None
error_message = None
try:
# Execute the code in a restricted namespace
# For safety, you might want to further restrict the available builtins/modules
# For this benchmark, we assume the provided Python code is generally safe.
local_namespace = {}
exec(code_string, {"__builtins__": __builtins__}, local_namespace)
# Try to get a 'final_answer' variable if it exists, as some questions might expect it
if 'final_answer' in local_namespace:
execution_result = str(local_namespace['final_answer'])
except Exception as e:
print(f"Error executing Python code: {e}")
error_message = f"Execution Error: {type(e).__name__}: {e}"
finally:
# Restore stdout
sys.stdout = old_stdout
# Get the content of captured_output
printed_output = captured_output.getvalue().strip()
if execution_result:
# If 'final_answer' was found, prioritize it
return execution_result, None
elif printed_output:
# If 'final_answer' not found, but something was printed, return that
return printed_output, None
elif error_message:
# If there was an error during execution
return None, error_message
else:
# If no 'final_answer', nothing printed, and no error (e.g., script only defines functions)
return "Python code executed without explicit output or 'final_answer' variable.", None
def clean_final_answer(raw_text: str) -> str:
"""More robustly cleans the raw text output from the LLM."""
if not isinstance(raw_text, str):
return "" # Should not happen, but good to be safe
answer = raw_text.strip()
# Attempt to extract content after "FINAL ANSWER:" if it's still present
# This regex is more robust to variations in spacing and casing
final_answer_match = re.search(r"FINAL ANSWER:\s*(.*)", answer, re.IGNORECASE | re.DOTALL)
if final_answer_match:
answer = final_answer_match.group(1).strip()
# Remove common conversational prefixes more aggressively
common_prefixes = [
"The answer is", "The final answer is", "So, the answer is", "Therefore, the answer is",
"Based on the information, the answer is", "The correct answer is", "My answer is",
"Okay, the answer is", "Sure, the answer is", "Here is the answer:", "The solution is",
"Answer:", "Result:"
]
for prefix in common_prefixes:
if answer.lower().startswith(prefix.lower()):
answer = answer[len(prefix):].strip()
# Remove potential colon or period after prefix
if answer.startswith(":") or answer.startswith("."):
answer = answer[1:].strip()
break # Stop after first prefix match
# Remove wrapping quotes (single or double)
if len(answer) >= 2:
if (answer.startswith('"') and answer.endswith('"')) or \
(answer.startswith("'") and answer.endswith("'")):
answer = answer[1:-1].strip()
# Specific GAIA formatting: remove units like $ or % unless specified otherwise by the question
# This is tricky to do generally, as some questions might require them.
# The prompt already tells Gemini about this. This is a fallback.
# For now, let's keep it simple and rely on the prompt.
# If a question asks for "USD with two decimal places", the LLM should include '$'.
# answer = answer.replace('$', '').replace('%', '').strip() # Re-evaluating if this is too aggressive
# Normalize spaces around commas for comma-separated lists
answer = re.sub(r'\s*,\s*', ',', answer)
# Remove trailing punctuation if it seems unintended (e.g. a lone period)
if len(answer) > 1 and answer.endswith(".") and not re.search(r"[a-zA-Z0-9]\.[a-zA-Z0-9]", answer): # Avoid stripping from e.g. "file.txt"
# Check if the part before the period is a number or a short phrase
# This is to avoid stripping periods from full sentences if the LLM disobeys "few words"
if not answer[:-1].strip().isdigit() and len(answer[:-1].strip().split()) > 3:
pass # Likely a sentence, keep period
else:
answer = answer[:-1].strip()
return answer
def my_agent_logic(task_id: str, question: str, files_metadata: list = None):
print(f"Agent (Enhanced Tools + Gemini) processing Task ID: {task_id}, Question: {question}")
if files_metadata:
print(f"File metadata associated: {files_metadata}")
gemini_api_key = os.environ.get("GEMINI_API_KEY")
if not gemini_api_key:
return f"ERROR_GEMINI_KEY_MISSING_FOR_TASK_{task_id}"
system_prompt_lines = [
"You are a general AI assistant. I will ask you a question.",
"Your primary goal is to provide the single, exact, concise, and factual answer to the question.",
"Do not include any conversational fluff, disclaimers, explanations, or any introductory phrases like 'The answer is:'. Your response should be ONLY the answer itself.",
"Do not use markdown formatting unless the question explicitly asks for it.",
"If the question implies a specific format (e.g., a number, a date, a comma-separated list), provide the answer in that format.",
"Do NOT include the phrase 'FINAL ANSWER:' in your response to me.",
"If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise by the question.",
"If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.",
"If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.",
"If external files or tool outputs are provided below, use their content if relevant and accessible to answer the question.",
]
user_question_text_for_gemini = "\n".join(system_prompt_lines) + f"\n\nGAIA Question: {question}"
gemini_parts = []
# --- File & Tool Handling ---
tool_output_description = ""
file_content_bytes, detected_mime_type, file_name = None, None, None
if files_metadata:
file_content_bytes, detected_mime_type, file_name = get_gaia_file_data_for_task(task_id, files_metadata)
if file_content_bytes:
if file_name and file_name.lower().endswith(".py") and detected_mime_type in ["text/x-python", "application/x-python-code", "text/plain"]:
print(f"Detected Python file: {file_name}")
try:
python_code = file_content_bytes.decode('utf-8')
execution_result, exec_error = execute_python_code(python_code)
if exec_error:
tool_output_description += f"\n\nExecution of Python file '{file_name}' failed: {exec_error}"
elif execution_result:
tool_output_description += f"\n\nOutput from executing Python file '{file_name}':\n{execution_result}"
else:
tool_output_description += f"\n\nPython file '{file_name}' executed without specific return or error."
except Exception as e_py_decode:
tool_output_description += f"\n\nError decoding Python file '{file_name}': {e_py_decode}"
elif detected_mime_type and detected_mime_type.startswith("image/"):
try:
base64_image = base64.b64encode(file_content_bytes).decode('utf-8')
gemini_parts.append({"inline_data": {"mime_type": detected_mime_type, "data": base64_image}})
tool_output_description += f"\n\nAn image file '{file_name}' ({detected_mime_type}) is provided. Refer to it if relevant."
print(f"Added image {file_name} to Gemini parts for task {task_id}.")
except Exception as e_img:
tool_output_description += f"\n\n[Agent note: Error processing image file '{file_name}': {e_img}]"
elif detected_mime_type and detected_mime_type.startswith("audio/"): # mp3, m4a, wav, etc.
try:
base64_audio = base64.b64encode(file_content_bytes).decode('utf-8')
gemini_parts.append({"inline_data": {"mime_type": detected_mime_type, "data": base64_audio}})
tool_output_description += f"\n\nAn audio file '{file_name}' ({detected_mime_type}) is provided. Transcribe or analyze it if relevant to the question."
print(f"Added audio {file_name} to Gemini parts for task {task_id}.")
except Exception as e_audio:
tool_output_description += f"\n\n[Agent note: Error processing audio file '{file_name}': {e_audio}]"
elif detected_mime_type in ["application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", "application/vnd.ms-excel", "text/csv"]:
try:
if "csv" in detected_mime_type: df = pd.read_csv(io.BytesIO(file_content_bytes))
else: df = pd.read_excel(io.BytesIO(file_content_bytes))
# Provide a more comprehensive preview
preview_rows = min(10, len(df))
preview_cols = min(5, len(df.columns))
preview_df = df.iloc[:preview_rows, :preview_cols]
df_description = f"First {preview_rows} rows and first {preview_cols} columns (if available):\n{preview_df.to_string(index=True)}\nTotal rows: {len(df)}, Total columns: {len(df.columns)}."
if len(df.columns) > preview_cols:
df_description += f"\nOther columns include: {list(df.columns[preview_cols:])}"
tool_output_description += f"\n\nData from spreadsheet '{file_name}':\n{df_description}"
print(f"Added spreadsheet preview for {file_name} to tool output description.")
except Exception as e_xls:
tool_output_description += f"\n\n[Agent note: Unable to parse spreadsheet '{file_name}': {e_xls}]"
elif detected_mime_type == "text/plain":
try:
text_content = file_content_bytes.decode('utf-8')
tool_output_description += f"\n\nContent of attached text file '{file_name}':\n{text_content[:2000]}" # Limit length
print(f"Added text file content '{file_name}' to tool output description.")
except Exception as e_txt:
tool_output_description += f"\n\n[Agent note: A text file '{file_name}' was associated but could not be decoded: {e_txt}]"
else:
tool_output_description += f"\n\nNote: A file named '{file_name}' (type: {detected_mime_type or 'unknown'}) is associated. Its content could not be directly processed by current tools."
elif files_metadata : # File metadata exists but no bytes fetched (e.g. 404)
tool_output_description += f"\n\nNote: File(s) {files_metadata} were listed for this task, but could not be fetched or processed."
# Append the main question and any tool/file processing notes as a single text part if no multimodal data was added yet,
# or as the first text part if multimodal data (image/audio) is present.
final_user_text_for_gemini = user_question_text_for_gemini + tool_output_description
if not any(p.get("inline_data") for p in gemini_parts): # If no image/audio was added
gemini_parts.append({"text": final_user_text_for_gemini})
else: # If image/audio was added, insert text part at the beginning
gemini_parts.insert(0, {"text": final_user_text_for_gemini})
payload = {
"contents": [{"role": "user", "parts": gemini_parts}],
"generationConfig": {"temperature": 0.1, "maxOutputTokens": 350} # Very low temp for GAIA
}
api_url_with_key = f"{GEMINI_API_URL_BASE}?key={gemini_api_key}"
agent_computed_answer = f"ERROR_CALLING_GEMINI_FOR_TASK_{task_id}"
try:
headers = {"Content-Type": "application/json"}
print(f"Calling Gemini API for task {task_id} with payload structure: {[(k, type(v)) for p in payload['contents'] for part in p['parts'] for k,v in part.items()]}")
response = requests.post(api_url_with_key, headers=headers, json=payload, timeout=90) # Increased timeout slightly
response.raise_for_status()
result = response.json()
if (result.get("candidates") and
result["candidates"][0].get("content") and
result["candidates"][0]["content"].get("parts") and
result["candidates"][0]["content"]["parts"][0].get("text")):
raw_answer_from_gemini = result["candidates"][0]["content"]["parts"][0]["text"].strip()
agent_computed_answer = clean_final_answer(raw_answer_from_gemini)
else:
print(f"Warning: Unexpected response structure from Gemini API for task {task_id}: {json.dumps(result, indent=2)}")
if result.get("promptFeedback") and result["promptFeedback"].get("blockReason"):
block_reason = result["promptFeedback"]["blockReason"]
agent_computed_answer = f"ERROR_GEMINI_PROMPT_BLOCKED_{block_reason}_FOR_TASK_{task_id}"
else:
agent_computed_answer = f"ERROR_PARSING_GEMINI_RESPONSE_FOR_TASK_{task_id}"
except requests.exceptions.Timeout:
agent_computed_answer = f"ERROR_GEMINI_TIMEOUT_FOR_TASK_{task_id}"
except requests.exceptions.RequestException as e:
if e.response is not None: print(f"Gemini API Error Response Status: {e.response.status_code}, Body: {e.response.text}")
agent_computed_answer = f"ERROR_GEMINI_REQUEST_FAILED_FOR_TASK_{task_id}"
except Exception as e:
agent_computed_answer = f"ERROR_UNEXPECTED_IN_AGENT_LOGIC_FOR_TASK_{task_id}"
print(f"Agent (Enhanced Tools + Gemini) computed answer for Task ID {task_id}: {agent_computed_answer}")
return agent_computed_answer
def run_agent_on_gaia(profile: gr.OAuthProfile, run_all_questions: bool = True):
if not profile:
return "You must be logged in to run the agent.", None, None
log_messages = ["Starting agent run..."]
questions_data, error_msg = get_gaia_api_questions()
if error_msg:
log_messages.append(error_msg)
return "\n".join(log_messages), None, None
if not questions_data:
log_messages.append("No questions retrieved from GAIA API.")
return "\n".join(log_messages), None, None
log_messages.append(f"Retrieved {len(questions_data)} questions from GAIA.")
answers_to_submit = []
tasks_to_process = questions_data
if not run_all_questions and questions_data:
import random
if not isinstance(questions_data, list) or not questions_data:
log_messages.append("Question data is not a list or is empty, cannot pick random.")
return "\n".join(log_messages), None, None
tasks_to_process = [random.choice(questions_data)]
log_messages.append(f"Processing 1 random question based on user choice.")
elif run_all_questions:
log_messages.append(f"Processing all {len(tasks_to_process)} questions.")
# Need to import sys for execute_python_code's stdout capture
global sys
import sys
for task in tasks_to_process:
task_id = task.get("task_id")
question = task.get("question")
associated_files_metadata = task.get("files", [])
if task_id and question:
log_messages.append(f"\nProcessing Task ID: {task_id}")
log_messages.append(f"Question: {question}")
if associated_files_metadata:
log_messages.append(f"Associated files metadata: {associated_files_metadata}")
submitted_answer = my_agent_logic(task_id, question, associated_files_metadata)
log_messages.append(f"Agent's Answer: {submitted_answer}")
answers_to_submit.append({"task_id": task_id, "submitted_answer": submitted_answer})
if run_all_questions: # Add a small delay if processing all questions to be kind to APIs
time.sleep(1) # 1-second delay between processing each question
else:
log_messages.append(f"Skipping malformed task: {task}")
if not answers_to_submit:
log_messages.append("No answers were generated by the agent.")
return "\n".join(log_messages), answers_to_submit, answers_to_submit
def submit_agent_answers(profile: gr.OAuthProfile, answers_for_submission_state):
if not profile:
return "You must be logged in to submit answers."
if not answers_for_submission_state:
return "No answers available to submit. Please run the agent first."
username = profile.username
space_id = os.getenv('SPACE_ID', '')
agent_code_link = f"https://huggingface.co/spaces/{space_id}/tree/main"
submission_log_messages = [f"Preparing to submit answers for user: {username}"]
if not space_id:
your_space_name_guess = os.path.basename(os.path.dirname(os.path.abspath(__file__)))
if not your_space_name_guess or your_space_name_guess == 'app':
your_space_name_guess = "YOUR_SPACE_NAME_HERE"
agent_code_link = f"https://huggingface.co/spaces/{username}/{your_space_name_guess}/tree/main"
submission_log_messages.append(f"Warning: SPACE_ID not found. Constructed agent_code_link as: {agent_code_link}. Please verify this link is correct.")
submission_log_messages.append(f"Agent Code Link: {agent_code_link}")
payload = {
"username": username,
"agent_code": agent_code_link,
"answers": answers_for_submission_state
}
try:
submit_url = f"{GAIA_API_BASE_URL}/submit"
print(f"Attempting to submit answers to: {submit_url} with payload: {payload}")
response = requests.post(submit_url, json=payload, timeout=60)
response.raise_for_status()
submission_response = response.json()
submission_log_messages.append(f"Submission successful! Response: {submission_response}")
message = submission_response.get("message")
score = submission_response.get("score")
score_string = submission_response.get("score_string")
final_message = "Submission processed."
if message: final_message = message
elif score_string: final_message = score_string
elif score is not None: final_message = f"Score: {score}"
return "\n".join(submission_log_messages) + f"\n\n➑️ Result: {final_message}"
except requests.exceptions.Timeout:
error_detail = f"Timeout error submitting answers to GAIA scoring API."
submission_log_messages.append(error_detail)
return "\n".join(submission_log_messages)
except requests.exceptions.RequestException as e:
error_detail = f"Error submitting answers: {e}"
if e.response is not None:
error_detail += f"\nResponse status: {e.response.status_code}"
try: error_detail += f"\nResponse body: {e.response.json()}"
except ValueError: error_detail += f"\nResponse body (text): {e.response.text}"
submission_log_messages.append(error_detail)
return "\n".join(submission_log_messages)
except Exception as e:
submission_log_messages.append(f"An unexpected error occurred during submission: {e}")
return "\n".join(submission_log_messages)
# --- Gradio Interface (largely unchanged) ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸŽ“ Agents Course - Unit 4 Final Project")
gr.Markdown("⚠️ **Note**: Due to high demand, you might experience occasional bugs. If something doesn't work, please try again after a moment!")
gr.Markdown("---")
gr.Markdown("Your Hugging Face login token (`HUGGINGFACE_TOKEN`) should be set as a Space Secret for dataset pushes.")
gr.Markdown("Your Gemini API Key (`GEMINI_API_KEY`) **MUST** be set as a Space Secret for the agent to function.")
gr.Markdown(f"**GAIA API Base URL Used:** `{GAIA_API_BASE_URL}`")
gr.LoginButton()
answers_to_submit_state = gr.State([])
with gr.Tabs():
with gr.TabItem("πŸ€– Run Agent on GAIA Benchmark"):
gr.Markdown("## Step 1: Run Your Agent & Generate Answers")
gr.Markdown("This agent uses the Gemini API with enhanced tool handling (Python execution, audio, spreadsheets) to generate answers.")
run_all_questions_checkbox = gr.Checkbox(label="Process all questions (unchecked processes 1 random question for testing)", value=True)
run_agent_button = gr.Button("πŸ”Ž Fetch Questions & Run My Agent")
gr.Markdown("### Agent Run Log & Generated Answers:")
agent_run_log_display = gr.Textbox(label="Agent Run Log", lines=10, interactive=False)
generated_answers_display = gr.JSON(label="Generated Answers (for review before submission)")
run_agent_button.click(
fn=run_agent_on_gaia,
inputs=[run_all_questions_checkbox],
outputs=[agent_run_log_display, generated_answers_display, answers_to_submit_state]
)
gr.Markdown("## Step 2: Submit Agent's Answers")
gr.Markdown("Once you have reviewed the generated answers, click below to submit them for scoring.")
submit_button = gr.Button("πŸš€ Submit Answers to GAIA Benchmark")
submission_status_display = gr.Textbox(label="Submission Status", lines=5, interactive=False)
submit_button.click(
fn=submit_agent_answers,
inputs=[answers_to_submit_state],
outputs=[submission_status_display]
)
with gr.TabItem("πŸ… Get Certificate"):
gr.Markdown("# βœ… How to Get Your Certificate (After Scoring >= 30%)")
gr.Markdown("""
1. Ensure you are logged in.
2. If your agent scored 30% or higher (after submitting on the 'Run Agent' tab), you can get your certificate.
3. Enter your full name as you want it to appear on the certificate.
4. Click 'Get My Certificate'.
""")
gr.Markdown("---")
gr.Markdown("πŸ“ **Note**: You must have successfully submitted your agent's answers and achieved a score of **30% or higher**.")
with gr.Row():
name_input = gr.Text(label="Enter your full name (this will appear on the certificate)")
generate_cert_btn = gr.Button("πŸ“œ Get My Certificate")
output_text_cert = gr.Textbox(label="Certificate Result")
cert_image_display = gr.Image(label="Your Certificate Image", type="pil")
cert_file_download = gr.File(label="Download Certificate (PDF)")
generate_cert_btn.click(
fn=handle_certificate,
inputs=[name_input],
outputs=[output_text_cert, cert_image_display, cert_file_download]
)
if __name__ == "__main__":
demo.launch()