File size: 12,710 Bytes
a6beb58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import streamlit as st
import cv2
import numpy as np
import json
from PIL import Image
import io
import tempfile
import os
from datetime import datetime
from seat_depth_analysis import process_seat_depth_analysis
st.set_page_config(
        page_title="Seat Depth Analyzer",
        page_icon="πŸͺ‘",
        layout="wide",
        initial_sidebar_state="expanded"
    )
# Custom CSS for background gradient and styling
st.markdown("""
    <style>
    /* Gradient background for the whole app */
    .stApp {
        background: linear-gradient(135deg, #e0f7fa, #ffffff, #fce4ec);
        background-attachment: fixed;
    }

    /* Make metric cards look modern */
    div[data-testid="metric-container"] {
        background-color: rgba(255, 255, 255, 0.7);
        padding: 15px;
        border-radius: 12px;
        box-shadow: 0 2px 10px rgba(0,0,0,0.1);
    }

    /* Beautify sidebar */
    section[data-testid="stSidebar"] {
        background: linear-gradient(180deg, #f1f8e9, #ffffff);
    }

    /* Make headers and titles prettier */
    h1, h2, h3 {
        font-family: 'Segoe UI', sans-serif;
        color: #2c3e50;
    }

    /* Button tweaks */
    button[kind="primary"] {
        background-color: #00796b;
        color: white;
        border-radius: 8px;
        padding: 8px 16px;
    }

    button[kind="primary"]:hover {
        background-color: #004d40;
        color: white;
    }

    /* Download button */
    div.stDownloadButton > button {
        background-color: #3949ab;
        color: white;
        border-radius: 8px;
    }

    div.stDownloadButton > button:hover {
        background-color: #1a237e;
    }

    </style>
""", unsafe_allow_html=True)

def main():
   
    
    st.title("πŸͺ‘βœ¨ SitSmart")
    st.subheader("Analyze your seat β€” because not all thrones are ergonomic :)")

    st.markdown("---")
    
    # Sidebar for configuration
    st.sidebar.header("πŸ“ Configuration: Anthropometric Assumption")
    st.sidebar.markdown(
    "We assume a default **ear-to-eye distance of 7 cm**, based on average adult anatomy. "
    "You may change this value if the subject in the image deviates significantly."
    )
    st.sidebar.caption("Don’t worry, no need to measure your face with a ruler. πŸ“πŸ‘‚")



    # Eye-to-ear distance setting
    eye_to_ear_cm = st.sidebar.slider(
        "Eye-to-Ear Distance (cm)",
        min_value=5.0,
        max_value=10.0,
        value=7.0,
        step=0.1,
        help="Average distance from eye to ear for scaling reference (default: 7.0 cm)"
    )
    
    sam_checkpoint = "sam_vit_b_01ec64.pth"

    # Information section
    st.sidebar.markdown("---")
    st.sidebar.header("πŸ“‹ Classification Guide")
    st.sidebar.markdown("""
    **Optimal**: 2-6 cm clearance from seat front to back of knee
    
    **Too Deep**: Less than 2 cm clearance (circulation risk)
    
    **Too Short**: More than 6 cm clearance (poor thigh support)
    """)
    
    
    st.header("πŸ“€ Choose Image")
    
    # Image source selection
    image_source = st.radio(
        "Select image source:",
        options=["Upload your own", "Choose from samples"],
        horizontal=True
    )
    
    selected_image_path = None
    uploaded_file = None
    
    if image_source == "Upload your own":
        # File uploader
        uploaded_file = st.file_uploader(
            "Choose a side-profile image of person seated on chair",
            type=['png', 'jpg', 'jpeg', 'webp'],
            help="Upload a clear side-profile image showing the person seated with their back against the chair"
        )
        
        if uploaded_file is not None:
            # Display uploaded image
            image = Image.open(uploaded_file)
            st.image(image, caption="Uploaded Image", width=500)

    else:  # Choose from samples
        sample_category = st.selectbox(
            "Select sample category:",
            options=["optimal", "too_deep", "too_short"],
            format_func=lambda x: x.replace("_", " ").title()
        )
        
        # Get available sample images
        sample_images = get_sample_images(sample_category)
        
        if sample_images:
            selected_image = st.selectbox(
                "Select sample image:",
                options=sample_images,
                format_func=lambda x: x.replace("_", " ").replace(".png", "").replace(".jpg", "").replace(".jpeg", "").title()
            )
            
            selected_image_path = os.path.join("sample_images", sample_category, selected_image)
            
            if os.path.exists(selected_image_path):
                # Display selected sample image
                image = Image.open(selected_image_path)
                st.image(image, caption=f"Sample: {selected_image}", width=500)
            else:
                st.error(f"Sample image not found: {selected_image_path}")
                selected_image_path = None
        else:
            st.warning(f"No sample images found in sample_images/{sample_category}/")
    
    # Process button
    if (uploaded_file is not None or selected_image_path is not None):
        if st.button("πŸ” Analyze Seat Depth", type="primary"):
            if image_source == "Upload your own":
                process_uploaded_image(uploaded_file, eye_to_ear_cm, sam_checkpoint)
            else:
                process_sample_image(selected_image_path, eye_to_ear_cm, sam_checkpoint)

    st.info("Upload an image and click 'Analyze Seat Depth' to see results here.")

def get_sample_images(category):
    """Get list of sample images for a given category"""
    sample_dir = os.path.join("sample_images", category)
    
    if not os.path.exists(sample_dir):
        return []
    
    # Get all image files
    valid_extensions = ['.png', '.jpg', '.jpeg', '.webp']
    sample_images = []
    
    try:
        for file in os.listdir(sample_dir):
            if any(file.lower().endswith(ext) for ext in valid_extensions):
                sample_images.append(file)
        return sorted(sample_images)  # Sort alphabetically
    except Exception:
        return []

def process_uploaded_image(uploaded_file, eye_to_ear_cm, sam_checkpoint):
    """Process the uploaded image and display results"""
    

    with st.spinner("πŸ”„ Processing uploaded image..."):
        try:
            # Save uploaded file temporarily
            with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp_file:
                tmp_file.write(uploaded_file.getbuffer())
                temp_path = tmp_file.name
            
            # Process the image using your main function
            output_json, pose_image, seat_band_image, final_image = process_seat_depth_analysis(
                temp_path, eye_to_ear_cm, sam_checkpoint
            )
            
            # Display results
            display_results(output_json, pose_image, seat_band_image, final_image)
            
            # Clean up temporary file
            os.unlink(temp_path)
            
        except Exception as e:
            st.error(f"❌ Error processing image: {str(e)}")
            st.error("Please ensure the image shows a clear side profile of a person seated on a chair.")

def process_sample_image(image_path, eye_to_ear_cm, sam_checkpoint):
    """Process the sample image and display results"""
    

    with st.spinner("πŸ”„ Processing sample image..."):
        try:
            # Process the image using your main function
            output_json, pose_image, seat_band_image, final_image = process_seat_depth_analysis(
                image_path, eye_to_ear_cm, sam_checkpoint
            )
            
            # Display results with sample info
            st.info(f"πŸ“ **Sample Image**: {os.path.basename(image_path)} from {os.path.basename(os.path.dirname(image_path))} category")
            display_results(output_json, pose_image, seat_band_image, final_image)
            
        except Exception as e:
            st.error(f"❌ Error processing sample image: {str(e)}")
            st.error(f"Could not process: {image_path}")


def display_results(output_json, pose_image, seat_band_image, final_image):
    """Display the analysis results in the Streamlit interface"""
    
    st.header("πŸ“Š Analysis Results")

    # Classification result with color coding
    category = output_json['classification']['category']
    
    if category == "Optimal":
        st.success(f"βœ… **Classification: {category}**")
    elif category == "Too Deep":
        st.error(f"πŸ”΄ **Classification: {category}**")
    else:  # Too Short
        st.warning(f"⚠️ **Classification: {category}**")
    
    # Key measurements
    st.markdown("### πŸ“ Key Measurements")
    
    col1, col2, col3 = st.columns(3)
    
    with col1:
        clearance_cm = output_json['measurements']['knee_clearance_cm']
        st.metric(
            "Knee Clearance",
            f"{clearance_cm:.2f} cm",
            help="Distance between seat front and back of knee"
        )
    
    with col2:
        facing = output_json['pose_detection']['facing_direction']
        st.metric(
            "Facing Direction",
            facing.title(),
            help="Direction the person is facing in the image"
        )
    
    with col3:
        pixels_per_cm = output_json['measurements']['pixels_per_cm']
        st.metric(
            "Scale Factor",
            f"{pixels_per_cm:.2f} px/cm",
            help="Pixels per centimeter for measurements"
        )
    
    # Reasoning
    st.markdown("### πŸ€” Analysis Reasoning")
    st.info(output_json['classification']['reasoning'])
    
    # Image results tabs
    st.markdown("### πŸ–ΌοΈ Analysis Visualization")
    
    tab1, tab2, tab3 = st.tabs(["Final Result", "Pose Detection", "Seat Band Analysis"])
    
    with tab1:
        st.image(
            final_image,
            caption="Final Analysis - Knee Clearance Measurement",
            width = 500
        )
        st.markdown("**Blue dot**: Seat front edge | **Red dot**: Back of knee position")

    with tab2:
        st.image(
            pose_image,
            caption="Pose Detection Overlay",
            width = 500
        )
        st.markdown("Shows detected pose landmarks and connections")
    
    with tab3:
        st.image(
            seat_band_image,
            caption="Seat Front Detection Band",
            width = 500
        )
        st.markdown("**Green lines**: Analysis band | **Blue dot**: Detected seat front")
    
    # Detailed measurements (expandable)
    with st.expander("πŸ“ Detailed Measurements"):
        col1, col2 = st.columns(2)
        
        with col1:
            st.json({
                "Measurements": {
                    "Knee Clearance (px)": f"{output_json['measurements']['knee_clearance_px']:.1f}",
                    "Knee Clearance (cm)": f"{output_json['measurements']['knee_clearance_cm']:.2f}",
                    "Eye-to-Ear Distance (px)": f"{output_json['measurements']['eye_to_ear_distance_px']:.1f}",
                    "Thigh Length (px)": f"{output_json['measurements']['thigh_length_px']:.1f}",
                    "Seat Front Position": output_json['measurements']['seat_front_position'],
                    "Back of Knee Position": output_json['measurements']['back_of_knee_position']
                }
            })
        
        with col2:
            st.json({
                "Detection Info": {
                    "Chair Detected": output_json['chair_detection']['chair_detected'],
                    "Chair Confidence": f"{output_json['chair_detection']['chair_confidence']:.3f}",
                    "Pose Detected": output_json['pose_detection']['pose_detected'],
                    "Processing Time": f"{output_json['processing_time_ms']} ms"
                }
            })
    
    # Warnings
    if output_json['warnings']:
        st.markdown("### ⚠️ Warnings")
        for warning in output_json['warnings']:
            st.warning(warning)
    
    # Download JSON results
    st.markdown("### πŸ’Ύ Download Results")
    
    json_str = json.dumps(output_json, indent=2)
    st.download_button(
        label="πŸ“„ Download JSON Report",
        data=json_str,
        file_name=f"seat_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
        mime="application/json",  help="Yes, a whole JSON just for your seat."
    )


if __name__ == "__main__":
    # Add sample images section at the bottom
    
    
    # Footer
    st.markdown(
        "<div style='text-align: center; color: gray;'>"
        "Ergonomic Seat Depth Analyzer | Built with Streamlit"
        "</div>", 
        unsafe_allow_html=True
    )
    main()