File size: 14,492 Bytes
190c620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import requests
import streamlit as st
from bs4 import BeautifulSoup
import pandas as pd
from transformers import pipeline
import plotly.express as px
import time
import io
import os  
from comet_ml import Experiment 
import zipfile
import re
from streamlit_extras.stylable_container import stylable_container


st.set_page_config(layout="wide", page_title="Named Entity Recognition App")




COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")

comet_initialized = False
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
    comet_initialized = True



st.subheader("58-Italian Named Entity Recognition Web App", divider="rainbow")
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")

expander = st.expander("**Important notes on the 58-Italian-Named Entity Recognition Web App**")
expander.write('''
    
    **Named Entities:**
    This 58-Italian-Named Entity Recognition Web App predicts fifty-eight (58) labels
    
    ("**INDIRIZZO**: Identifica un indirizzo fisico.
    
     **VALUTA**: Rappresenta una valuta.
     
     **CVV**: Codice di sicurezza della carta di credito.
     
     **NUMERO_CONTO**: Numero di un conto bancario.
     
     **BIC**: Codice identificativo di una banca (Bank Identifier Code).
     
     **IBAN**: Numero di conto bancario internazionale.
     
     **STATO**: Identifica un paese o una nazione.
     
     **NOME**: Riferito al nome di una persona.
     
     **COGNOME**: Riferito al cognome di una persona.
     
     **CODICE_POSTALE**: Codice postale di un'area geografica.
     
     **IP**: Indirizzo IP di un dispositivo in rete.
     
     **ORARIO**: Riferito a un orario specifico.
     
     **URL**: Indirizzo web (Uniform Resource Locator).
     
     **LUOGO**: Identifica un luogo geografico.
     
     **IMPORTO**: Riferito a una somma di denaro.
     
     **EMAIL**: Indirizzo di posta elettronica.
     
     **PASSWORD**: Parola chiave per l'accesso a sistemi protetti.
     
     **NUMERO_CARTA**: Numero di una carta di credito o debito.
     
     **TARGA_VEICOLO**: Numero di targa di un veicolo.
     
     **DATA_NASCITA**: Data di nascita di una persona.
     
     **DATA_MORTE**: Data di decesso di una persona.
     
     **RAGIONE_SOCIALE**: Nome legale di un'azienda o entità commerciale.
     
     **ETA**: Età di una persona.
     
     **DATA**: Riferita a una data generica.
     
     **PROFESSIONE**: Occupazione o lavoro di una persona.
     
     **PIN**: Numero di identificazione personale.
     
     **NUMERO_TELEFONO**: Numero telefonico.
     
     **FOGLIO**: Riferito a un foglio di documentazione.
     
     **PARTICELLA**: Riferito a una particella catastale.
     
     **CARTELLA_CLINICA**: Documentazione medica di un paziente.
     
     **MALATTIA**: Identifica una malattia o condizione medica.
     
     **MEDICINA**: Riferito a un farmaco o trattamento medico.
     
     **CODICE_FISCALE**: Codice fiscale personale o aziendale.
     
     **NUMERO_DOCUMENTO**: Numero di un documento ufficiale.
     
     **STORIA_CLINICA**: Registro delle condizioni mediche di un paziente.
     
     **AVV_NOTAIO**: Identifica un avvocato o notaio.
     
     **P_IVA**: Partita IVA di un'azienda o professionista.
     
     **LEGGE**: Riferito a una legge specifica.
     
     **TASSO_MUTUO**: Tasso di interesse di un mutuo.
     
     **N_SENTENZA**: Numero di una sentenza legale.
     
     **MAPPALE**: Riferito a un mappale catastale.
     
     **SUBALTERNO**: Riferito a un subalterno catastale.
     
     **REGIME_PATRIMONIALE**: Stato patrimoniale in ambito legale.
     
     **STATO_CIVILE**: Stato civile di una persona.
     
     **BANCA**: Identifica una banca o istituto di credito.
     
     **BRAND**: Marchio o brand commerciale.
     
     **NUM_ASSEGNO_BANCARIO**: Numero di un assegno bancario.
     
     **IMEI**: Numero di identificazione internazionale di un dispositivo mobile.
     
     **N_LICENZA**: Numero di una licenza specifica.
     
     **IPV6_1**: Indirizzo IP versione 6.
     
     **MAC**: Indirizzo MAC di un dispositivo di rete.
     
     **USER_AGENT**: Identifica il software usato per accedere a una rete.
     
     **TRIBUNALE**: Identifica un tribunale specifico.
     
     **STRENGTH**: Riferito alla forza o intensità di del medicinale.
     
     **FREQUENZA**: Riferito alla frequenza di un trattamento medico.
     
     **DURATION**: Durata di un evento o trattamento.
     
     **DOSAGGIO**: Quantità di un medicinale da assumere.
     
     **FORM**: Forma del medicinale, ad esempio compresse"). 
     
     Results are presented in an easy-to-read table, visualized in an interactive tree map, pie chart, and bar chart, and are available for download along with a Glossary of tags.
    
    **How to Use:**
    Paste a URL, and then press Enter. If you type or paste text, just press Ctrl + Enter.
    
    **Usage Limits:**
     You can request results up to 10 times.
 
    **Customization:**
    To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
    
    **Technical issues:**
    If your connection times out, please refresh the page or reopen the app's URL.
    
    For any errors or inquiries, please contact us at info@nlpblogs.com
    
''')






with st.sidebar:
    container = st.container(border=True)
    container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
    st.subheader("Related NLP Web Apps", divider="rainbow")
    st.link_button("8-Named Entity Recognition Web App", "https://nlpblogs.com/shop/named-entity-recognition-ner/8-named-entity-recognition-web-app/", type="primary")
    

if 'source_type_attempts' not in st.session_state:
    st.session_state['source_type_attempts'] = 0
max_attempts = 10 

def clear_url_input():
    
    st.session_state.url = ""

def clear_text_input():
    
    st.session_state.my_text_area = ""

url = st.text_input("Enter URL from the internet, and then press Enter:", key="url")
st.button("Clear URL", on_click=clear_url_input)

text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", key='my_text_area')
st.button("Clear Text", on_click=clear_text_input)


source_type = None
input_content = None
text_to_process = None 

if url:
    source_type = 'url'
    input_content = url
elif text:
    source_type = 'text'
    input_content = text

if source_type:
    
    st.subheader("Results", divider = "rainbow")

    
    if st.session_state['source_type_attempts'] >= max_attempts:
        st.error(f"You have requested results {max_attempts} times. You have reached your daily request limit.")
        st.stop()

    st.session_state['source_type_attempts'] += 1

    
    @st.cache_resource
    def load_ner_model():
        
        return pipeline("token-classification", model="DeepMount00/Italian_NER_XXL", aggregation_strategy="max")

    model = load_ner_model()
    experiment = None 

    try:
        if source_type == 'url':
            if not url.startswith(("http://", "https://")):
                st.error("Please enter a valid URL starting with 'http://' or 'https://'.")
            else:
                with st.spinner(f"Fetching and parsing content from **{url}**...", show_time=True):
                    f = requests.get(url, timeout=10)
                    f.raise_for_status()  # Raise an HTTPError for bad responses (4xx or 5xx)
                    soup = BeautifulSoup(f.text, 'html.parser')
                    text_to_process = soup.get_text(separator=' ', strip=True)
                    st.divider()
                    st.write("**Input text content**")
                    st.write(text_to_process[:500] + "..." if len(text_to_process) > 500 else text_to_process)

                    

        elif source_type == 'text':
            text_to_process = text
            st.divider()
            st.write("**Input text content**")
            
            st.write(text_to_process[:500] + "..." if len(text_to_process) > 500 else text_to_process)

        if text_to_process and len(text_to_process.strip()) > 0: 
            with st.spinner("Analyzing text...", show_time=True):
                entities = model(text_to_process)
                data = []
                for entity in entities:
                    data.append({
                        'word': entity['word'],
                        'entity_group': entity['entity_group'],
                        'score': entity['score'],
                        'start': entity['start'], # Include start and end for download
                        'end': entity['end']
                    })
                df = pd.DataFrame(data)

                
                pattern = r'[^\w\s]'
                df['word'] = df['word'].replace(pattern, '', regex=True)
                
                df = df.replace('', 'Unknown')
                st.dataframe(df)

                
                if comet_initialized:
                    experiment = Experiment(
                        api_key=COMET_API_KEY,
                        workspace=COMET_WORKSPACE,
                        project_name=COMET_PROJECT_NAME,
                    )
                    experiment.log_parameter("input_source_type", source_type)
                    experiment.log_parameter("input_content_length", len(input_content))
                    experiment.log_table("predicted_entities", df)

                with st.expander("See Glossary of tags"):
                    st.write('''
                    '**word**': ['entity extracted from your text data']
                    
                    '**score**': ['accuracy score; how accurately a tag has been assigned to a given entity']
            
                    '**entity_group**': ['label (tag) assigned to a given extracted entity']
            
                    '**start**': ['index of the start of the corresponding entity']
            
                    '**end**': ['index of the end of the corresponding entity'] 
                    
                    ''')
                
                
                if not df.empty:
                    
                    st.markdown("---")
                    st.subheader("Treemap", divider="rainbow")
                    fig = px.treemap(df, path=[px.Constant("all"), 'entity_group', 'word'],
                                     values='score', color='entity_group',
                                     )
                    fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
                    st.plotly_chart(fig, use_container_width=True)
                    if comet_initialized and experiment: 
                        experiment.log_figure(figure=fig, figure_name="entity_treemap")

                    
                    
                    value_counts = df['entity_group'].value_counts().reset_index()
                    value_counts.columns = ['entity_group', 'count']

                    col1, col2 = st.columns(2)
                    with col1:
                        st.subheader("Pie Chart", divider="rainbow")
                        fig1 = px.pie(value_counts, values='count', names='entity_group',
                                      hover_data=['count'], labels={'count': 'count'},
                                      title='Percentage of Predicted Labels')
                        fig1.update_traces(textposition='inside', textinfo='percent+label')
                        st.plotly_chart(fig1, use_container_width=True)
                        if comet_initialized and experiment: # Check if experiment is initialized
                            experiment.log_figure(figure=fig1, figure_name="label_pie_chart")

                    with col2:
                        st.subheader("Bar Chart", divider="rainbow")
                        fig2 = px.bar(value_counts, x="count", y="entity_group", color="entity_group",
                                      text_auto=True, title='Occurrences of Predicted Labels')
                        st.plotly_chart(fig2, use_container_width=True)
                        if comet_initialized and experiment: # Check if experiment is initialized
                            experiment.log_figure(figure=fig2, figure_name="label_bar_chart")
                else:
                    st.warning("No entities were extracted from the provided text.")

                
                
                dfa = pd.DataFrame(
                    data={
                        'word': ['entity extracted from your text data'],
                        'score': ['accuracy score; how accurately a tag has been assigned to a given entity'],
                        'entity_group': ['label (tag) assigned to a given extracted entity'],
                        'start': ['index of the start of the corresponding entity'],
                        'end': ['index of the end of the corresponding entity'],
                        

                    }
                )
                buf = io.BytesIO()
                with zipfile.ZipFile(buf, "w") as myzip:
                    if not df.empty:
                        myzip.writestr("Summary_of_results.csv", df.to_csv(index=False))
                    myzip.writestr("Glossary_of_tags.csv", dfa.to_csv(index=False))

                with stylable_container(
                     key="download_button",
                     css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
                 ):
                    st.download_button(
                         label="Download zip file",
                         data=buf.getvalue(),
                         file_name="nlpblogs_ner_results.zip",
                         mime="application/zip",)



                st.divider()
        else:
            st.warning("No meaningful text found to process. Please enter a URL or text.")

    
    except Exception as e:
        st.error(f"An unexpected error occurred: {e}")
    finally:
        if comet_initialized and experiment:
            experiment.end()

st.write(f"Number of times you requested results: **{st.session_state['source_type_attempts']}/{max_attempts}**")