Maria Tsilimos commited on
Commit
40cca74
·
unverified ·
1 Parent(s): 96fc515

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +279 -0
app.py ADDED
@@ -0,0 +1,279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ import streamlit as st
3
+ from bs4 import BeautifulSoup
4
+ import pandas as pd
5
+ from transformers import pipeline
6
+ import plotly.express as px
7
+ import time
8
+ import io
9
+ import os
10
+ from comet_ml import Experiment
11
+ import zipfile
12
+ import re
13
+ from streamlit_extras.stylable_container import stylable_container
14
+
15
+
16
+ st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
17
+
18
+
19
+
20
+
21
+ COMET_API_KEY = os.environ.get("COMET_API_KEY")
22
+ COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
23
+ COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
24
+
25
+ comet_initialized = False
26
+ if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
27
+ comet_initialized = True
28
+
29
+
30
+
31
+ st.subheader("9-Personal Data Named Entity Recognition Web App", divider="rainbow")
32
+ st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
33
+
34
+ expander = st.expander("**Important notes on the 9-Personal Data Named Entity Recognition Web App**")
35
+ expander.write('''
36
+
37
+ **Named Entities:**
38
+ This 9-Personal Data Named Entity Recognition Web App predicts nine (9) categories:
39
+
40
+ 1. **Account-related information**: Account name, account number, and transaction amounts
41
+
42
+ 2. **Banking details**: BIC, IBAN, and Bitcoin or Ethereum addresses
43
+
44
+ 3. **Personal information**: Full name, first name, middle name, last name, gender, and date of birth
45
+
46
+ 4. **Contact information**: Email, phone number, and street address (including building number, city, county, state, and zip code)
47
+
48
+ 5. **Job-related data**: Job title, job area, job descriptor, and job type
49
+
50
+ 6. **Financial data**: Credit card number, issuer, CVV, and currency information (code, name, and symbol)
51
+
52
+ 7. **Digital identifiers**: IP addresses (IPv4 and IPv6), MAC addresses, and user agents
53
+
54
+ 8. **Online presence**: URL, usernames, and passwords
55
+
56
+ 9. **Other sensitive data**: SSN, vehicle VIN and VRM, phone IMEI, and nearby GPS coordinates
57
+
58
+ Results are presented in an easy-to-read table, visualized in an interactive tree map, pie chart, and bar chart, and are available for download along with a Glossary of tags.
59
+
60
+ **How to Use:**
61
+ Upload your .pdf or .docx file. Then, click the 'Results' button to extract and tag entities in your text data.
62
+
63
+ **Usage Limits:**
64
+ You can request results up to 10 times.
65
+
66
+ **Customization:**
67
+ To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
68
+
69
+ **Technical issues:**
70
+ If your connection times out, please refresh the page or reopen the app's URL.
71
+
72
+ For any errors or inquiries, please contact us at info@nlpblogs.com
73
+
74
+ ''')
75
+
76
+
77
+
78
+
79
+ with st.sidebar:
80
+ container = st.container(border=True)
81
+ container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
82
+ st.subheader("Related NLP Web Apps", divider="rainbow")
83
+ st.link_button("8-Named Entity Recognition Web App", "https://nlpblogs.com/shop/named-entity-recognition-ner/8-named-entity-recognition-web-app/", type="primary")
84
+
85
+
86
+ if 'source_type_attempts' not in st.session_state:
87
+ st.session_state['source_type_attempts'] = 0
88
+ max_attempts = 10
89
+
90
+ def clear_url_input():
91
+
92
+ st.session_state.url = ""
93
+
94
+ def clear_text_input():
95
+
96
+ st.session_state.my_text_area = ""
97
+
98
+ url = st.text_input("Enter URL from the internet, and then press Enter:", key="url")
99
+ st.button("Clear URL", on_click=clear_url_input)
100
+
101
+ text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", key='my_text_area')
102
+ st.button("Clear Text", on_click=clear_text_input)
103
+
104
+
105
+ source_type = None
106
+ input_content = None
107
+ text_to_process = None
108
+
109
+ if url:
110
+ source_type = 'url'
111
+ input_content = url
112
+ elif text:
113
+ source_type = 'text'
114
+ input_content = text
115
+
116
+ if source_type:
117
+
118
+ st.subheader("Results", divider = "rainbow")
119
+
120
+
121
+ if st.session_state['source_type_attempts'] >= max_attempts:
122
+ st.error(f"You have requested results {max_attempts} times. You have reached your daily request limit.")
123
+ st.stop()
124
+
125
+ st.session_state['source_type_attempts'] += 1
126
+
127
+
128
+ @st.cache_resource
129
+ def load_ner_model():
130
+
131
+ return pipeline("token-classification", model="h2oai/deberta_finetuned_pii", aggregation_strategy="first")
132
+
133
+ model = load_ner_model()
134
+ experiment = None
135
+
136
+ try:
137
+ if source_type == 'url':
138
+ if not url.startswith(("http://", "https://")):
139
+ st.error("Please enter a valid URL starting with 'http://' or 'https://'.")
140
+ else:
141
+ with st.spinner(f"Fetching and parsing content from **{url}**...", show_time=True):
142
+ f = requests.get(url, timeout=10)
143
+ f.raise_for_status() # Raise an HTTPError for bad responses (4xx or 5xx)
144
+ soup = BeautifulSoup(f.text, 'html.parser')
145
+ text_to_process = soup.get_text(separator=' ', strip=True)
146
+ st.divider()
147
+ st.write("**Input text content**")
148
+ st.write(text_to_process[:500] + "..." if len(text_to_process) > 500 else text_to_process)
149
+
150
+
151
+
152
+ elif source_type == 'text':
153
+ text_to_process = text
154
+ st.divider()
155
+ st.write("**Input text content**")
156
+
157
+ st.write(text_to_process[:500] + "..." if len(text_to_process) > 500 else text_to_process)
158
+
159
+ if text_to_process and len(text_to_process.strip()) > 0:
160
+ with st.spinner("Analyzing text...", show_time=True):
161
+ entities = model(text_to_process)
162
+ data = []
163
+ for entity in entities:
164
+ data.append({
165
+ 'word': entity['word'],
166
+ 'entity_group': entity['entity_group'],
167
+ 'score': entity['score'],
168
+ 'start': entity['start'], # Include start and end for download
169
+ 'end': entity['end']
170
+ })
171
+ df = pd.DataFrame(data)
172
+
173
+
174
+ pattern = r'[^\w\s]'
175
+ df['word'] = df['word'].replace(pattern, '', regex=True)
176
+
177
+ df = df.replace('', 'Unknown')
178
+ st.dataframe(df)
179
+
180
+
181
+ if comet_initialized:
182
+ experiment = Experiment(
183
+ api_key=COMET_API_KEY,
184
+ workspace=COMET_WORKSPACE,
185
+ project_name=COMET_PROJECT_NAME,
186
+ )
187
+ experiment.log_parameter("input_source_type", source_type)
188
+ experiment.log_parameter("input_content_length", len(input_content))
189
+ experiment.log_table("predicted_entities", df)
190
+
191
+ with st.expander("See Glossary of tags"):
192
+ st.write('''
193
+ '**word**': ['entity extracted from your text data']
194
+
195
+ '**score**': ['accuracy score; how accurately a tag has been assigned to a given entity']
196
+
197
+ '**entity_group**': ['label (tag) assigned to a given extracted entity']
198
+
199
+ '**start**': ['index of the start of the corresponding entity']
200
+
201
+ '**end**': ['index of the end of the corresponding entity']
202
+ ''')
203
+
204
+
205
+ if not df.empty:
206
+
207
+ st.markdown("---")
208
+ st.subheader("Treemap", divider="rainbow")
209
+ fig = px.treemap(df, path=[px.Constant("all"), 'entity_group', 'word'],
210
+ values='score', color='entity_group',
211
+ )
212
+ fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
213
+ st.plotly_chart(fig, use_container_width=True)
214
+ if comet_initialized and experiment:
215
+ experiment.log_figure(figure=fig, figure_name="entity_treemap")
216
+
217
+
218
+
219
+ value_counts = df['entity_group'].value_counts().reset_index()
220
+ value_counts.columns = ['entity_group', 'count']
221
+
222
+ col1, col2 = st.columns(2)
223
+ with col1:
224
+ st.subheader("Pie Chart", divider="rainbow")
225
+ fig1 = px.pie(value_counts, values='count', names='entity_group',
226
+ hover_data=['count'], labels={'count': 'count'},
227
+ title='Percentage of Predicted Labels')
228
+ fig1.update_traces(textposition='inside', textinfo='percent+label')
229
+ st.plotly_chart(fig1, use_container_width=True)
230
+ if comet_initialized and experiment: # Check if experiment is initialized
231
+ experiment.log_figure(figure=fig1, figure_name="label_pie_chart")
232
+
233
+ with col2:
234
+ st.subheader("Bar Chart", divider="rainbow")
235
+ fig2 = px.bar(value_counts, x="count", y="entity_group", color="entity_group",
236
+ text_auto=True, title='Occurrences of Predicted Labels')
237
+ st.plotly_chart(fig2, use_container_width=True)
238
+ if comet_initialized and experiment: # Check if experiment is initialized
239
+ experiment.log_figure(figure=fig2, figure_name="label_bar_chart")
240
+ else:
241
+ st.warning("No entities were extracted from the provided text.")
242
+
243
+
244
+
245
+ dfa = pd.DataFrame(
246
+ data={
247
+ 'word': ['entity extracted from your text data'],
248
+ 'score': ['accuracy score; how accurately a tag has been assigned to a given entity'],
249
+ 'entity_group': ['label (tag) assigned to a given extracted entity'],
250
+ 'start': ['index of the start of the corresponding entity'],
251
+ 'end': ['index of the end of the corresponding entity'],
252
+ }
253
+ )
254
+ buf = io.BytesIO()
255
+ with zipfile.ZipFile(buf, "w") as myzip:
256
+ if not df.empty:
257
+ myzip.writestr("Summary_of_results.csv", df.to_csv(index=False))
258
+ myzip.writestr("Glossary_of_tags.csv", dfa.to_csv(index=False))
259
+
260
+ with stylable_container(
261
+ key="download_button",
262
+ css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
263
+ ):
264
+ st.download_button(
265
+ label="Download zip file",
266
+ data=buf.getvalue(),
267
+ file_name="nlpblogs_ner_results.zip",
268
+ mime="application/zip",)
269
+
270
+
271
+ if comet_initialized and experiment: # Ensure experiment exists before ending
272
+ experiment.end()
273
+ else:
274
+ st.warning("No meaningful text found to process. Please enter a URL or text.")
275
+
276
+ except requests.exceptions.RequestException as e:
277
+ st.error(f"Error fetching the URL: {e}. Please check the URL and your internet connection.")
278
+
279
+ st.write(f"Number of times you requested results: **{st.session_state['source_type_attempts']}/{max_attempts}**")