Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import time
|
3 |
+
import pandas as pd
|
4 |
+
import io
|
5 |
+
import zipfile
|
6 |
+
from gliner import GLiNER
|
7 |
+
from streamlit_extras.stylable_container import stylable_container
|
8 |
+
import plotly.express as px
|
9 |
+
import os
|
10 |
+
from comet_ml import Experiment
|
11 |
+
|
12 |
+
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
13 |
+
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
14 |
+
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
15 |
+
|
16 |
+
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
|
17 |
+
comet_initialized = True
|
18 |
+
else:
|
19 |
+
comet_initialized = False
|
20 |
+
st.warning("Comet ML not initialized. Check environment variables.")
|
21 |
+
|
22 |
+
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", key='my_text_area')
|
23 |
+
|
24 |
+
if st.button("Results"):
|
25 |
+
with st.spinner("Wait for it...", show_time=True):
|
26 |
+
time.sleep(5)
|
27 |
+
model = GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0")
|
28 |
+
labels = ["person", "country", "city", "organization", "date", "money", "percent value", "position"]
|
29 |
+
entities = model.predict_entities(text, labels)
|
30 |
+
df = pd.DataFrame(entities)
|
31 |
+
|
32 |
+
if comet_initialized:
|
33 |
+
experiment = Experiment(
|
34 |
+
api_key=COMET_API_KEY,
|
35 |
+
workspace=COMET_WORKSPACE,
|
36 |
+
project_name=COMET_PROJECT_NAME,
|
37 |
+
)
|
38 |
+
experiment.log_parameter("input_text", text)
|
39 |
+
experiment.log_table("predicted_entities", df)
|
40 |
+
|
41 |
+
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
|
42 |
+
df_styled = df.style.set_properties(**properties)
|
43 |
+
st.dataframe(df_styled)
|
44 |
+
|
45 |
+
with st.expander("See Glossary of tags"):
|
46 |
+
st.write('''
|
47 |
+
'**text**': ['entity extracted from your text data']
|
48 |
+
'**score**': ['accuracy score; how accurately a tag has been assigned to a given entity']
|
49 |
+
'**label**': ['label (tag) assigned to a given extracted entity']
|
50 |
+
'**start**': ['index of the start of the corresponding entity']
|
51 |
+
'**end**': ['index of the end of the corresponding entity']
|
52 |
+
''')
|
53 |
+
|
54 |
+
if df is not None:
|
55 |
+
fig = px.treemap(df, path=[px.Constant("all"), 'text', 'label'],
|
56 |
+
values='score', color='label')
|
57 |
+
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
58 |
+
st.subheader("Tree map", divider = "red")
|
59 |
+
st.plotly_chart(fig)
|
60 |
+
if comet_initialized:
|
61 |
+
experiment.log_figure(figure=fig, figure_name="entity_treemap")
|
62 |
+
|
63 |
+
if df is not None:
|
64 |
+
value_counts1 = df['label'].value_counts()
|
65 |
+
df1 = pd.DataFrame(value_counts1)
|
66 |
+
final_df = df1.reset_index().rename(columns={"index": "label"})
|
67 |
+
col1, col2 = st.columns(2)
|
68 |
+
with col1:
|
69 |
+
fig1 = px.pie(final_df, values='count', names='label', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted labels')
|
70 |
+
fig1.update_traces(textposition='inside', textinfo='percent+label')
|
71 |
+
st.subheader("Pie Chart", divider = "red")
|
72 |
+
st.plotly_chart(fig1)
|
73 |
+
if comet_initialized:
|
74 |
+
experiment.log_figure(figure=fig1, figure_name="label_pie_chart")
|
75 |
+
with col2:
|
76 |
+
fig2 = px.bar(final_df, x="count", y="label", color="label", text_auto=True, title='Occurrences of predicted labels')
|
77 |
+
st.subheader("Bar Chart", divider = "red")
|
78 |
+
st.plotly_chart(fig2)
|
79 |
+
if comet_initialized:
|
80 |
+
experiment.log_figure(figure=fig2, figure_name="label_bar_chart")
|
81 |
+
|
82 |
+
dfa = pd.DataFrame(
|
83 |
+
data={
|
84 |
+
'text': ['entity extracted from your text data'], 'score': ['accuracy score; how accurately a tag has been assigned to a given entity'], 'label': ['label (tag) assigned to a given extracted entity'],
|
85 |
+
'start': ['index of the start of the corresponding entity'],
|
86 |
+
'end': ['index of the end of the corresponding entity'],
|
87 |
+
})
|
88 |
+
buf = io.BytesIO()
|
89 |
+
with zipfile.ZipFile(buf, "w") as myzip:
|
90 |
+
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
91 |
+
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
92 |
+
if comet_initialized:
|
93 |
+
myzip.writestr("Summary of the results_glossary_combined.csv", pd.concat([df, dfa]).to_csv(index=False))
|
94 |
+
|
95 |
+
with stylable_container(
|
96 |
+
key="download_button",
|
97 |
+
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
|
98 |
+
):
|
99 |
+
st.download_button(
|
100 |
+
label="Download zip file",
|
101 |
+
data=buf.getvalue(),
|
102 |
+
file_name="zip file.zip",
|
103 |
+
mime="application/zip",
|
104 |
+
)
|
105 |
+
if comet_initialized:
|
106 |
+
experiment.log_asset(buf.getvalue(), file_name="downloadable_results.zip")
|
107 |
+
|
108 |
+
st.divider()
|
109 |
+
if comet_initialized:
|
110 |
+
experiment.end()
|