import gradio as gr from loadimg import load_img import spaces from transformers import AutoModelForImageSegmentation import torch from torchvision import transforms from typing import Union, Tuple from PIL import Image torch.set_float32_matmul_precision(["high", "highest"][0]) birefnet = AutoModelForImageSegmentation.from_pretrained( "ZhengPeng7/BiRefNet", trust_remote_code=True ) birefnet.to("cuda") transform_image = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) def fn(image: Union[Image.Image, str]) -> Tuple[Image.Image, Image.Image]: """ Remove the background from an image and return both the transparent version and the original. This function performs background removal using a BiRefNet segmentation model. It is intended for use with image input (either uploaded or from a URL). The function returns a transparent PNG version of the image with the background removed, along with the original RGB version for comparison. Args: image (PIL.Image or str): The input image, either as a PIL object or a filepath/URL string. Returns: tuple: - processed_image (PIL.Image): The input image with the background removed and transparency applied. - origin (PIL.Image): The original RGB image, unchanged. """ im = load_img(image, output_type="pil") im = im.convert("RGB") origin = im.copy() processed_image = process(im) return (processed_image, origin) @spaces.GPU def process(image: Image.Image) -> Image.Image: """ Apply BiRefNet-based image segmentation to remove the background. This function preprocesses the input image, runs it through a BiRefNet segmentation model to obtain a mask, and applies the mask as an alpha (transparency) channel to the original image. Args: image (PIL.Image): The input RGB image. Returns: PIL.Image: The image with the background removed, using the segmentation mask as transparency. """ image_size = image.size input_images = transform_image(image).unsqueeze(0).to("cuda") # Prediction with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image_size) image.putalpha(mask) return image def process_file(f: str) -> str: """ Load an image file from disk, remove the background, and save the output as a transparent PNG. Args: f (str): Filepath of the image to process. Returns: str: Path to the saved PNG image with background removed. """ name_path = f.rsplit(".", 1)[0] + ".png" im = load_img(f, output_type="pil") im = im.convert("RGB") transparent = process(im) transparent.save(name_path) return name_path slider1 = gr.ImageSlider(label="Processed Image", type="pil", format="png") slider2 = gr.ImageSlider(label="Processed Image from URL", type="pil", format="png") image_upload = gr.Image(label="Upload an image") image_file_upload = gr.Image(label="Upload an image", type="filepath") url_input = gr.Textbox(label="Paste an image URL") output_file = gr.File(label="Output PNG File") # Example images chameleon = load_img("butterfly.jpg", output_type="pil") url_example = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg" tab1 = gr.Interface(fn, inputs=image_upload, outputs=slider1, examples=[chameleon], api_name="image") tab2 = gr.Interface(fn, inputs=url_input, outputs=slider2, examples=[url_example], api_name="text") tab3 = gr.Interface(process_file, inputs=image_file_upload, outputs=output_file, examples=["butterfly.jpg"], api_name="png") demo = gr.TabbedInterface( [tab1, tab2, tab3], ["Image Upload", "URL Input", "File Output"], title="Background Removal Tool" ) if __name__ == "__main__": demo.launch(show_error=True, mcp_server=True)