Spaces:
Running
on
Zero
Running
on
Zero
File size: 37,524 Bytes
5e54069 06b904d 7649165 c59adf8 ceb7ebf c59adf8 7649165 888e818 427ce39 7cf016f 99ff812 427ce39 3c30a0a 1461032 888e818 d441278 70438f0 a1d23de d441278 06b904d 3ea9b86 06b904d 731f4bf 06b904d 731f4bf 06b904d 731f4bf 06b904d 731f4bf 06b904d 731f4bf 06b904d 24dd7ba 06b904d 731f4bf e84487c 731f4bf 06b904d 731f4bf 06b904d 3ea9b86 70438f0 731f4bf 70438f0 5dddf57 70438f0 3ea9b86 6d56dd1 7cf016f 6d56dd1 70438f0 aa22724 e48217c 8c68b8b e48217c 28a7e7e 6d56dd1 7cf016f 6d56dd1 28a7e7e 3ea9b86 28a7e7e 6d56dd1 7cf016f bbd0dd5 6d56dd1 427ce39 6d56dd1 427ce39 70438f0 427ce39 70438f0 427ce39 8c68b8b 70438f0 7cf016f 8c68b8b 7cf016f 8c68b8b 7cf016f 8c68b8b 51ab2c6 8c68b8b 2861a47 5411f5d 8c68b8b 5411f5d 8c68b8b 5411f5d 8c68b8b c59adf8 caef0e2 8c68b8b 9f7c374 8c68b8b 70438f0 8c68b8b 70438f0 8c68b8b 7cf016f 8c68b8b 7cf016f 9f7c374 8c68b8b 70438f0 4a29c47 6d56dd1 70438f0 427ce39 6d56dd1 70438f0 7cf016f 6d56dd1 4a29c47 70438f0 1461032 5a14daf 70438f0 4a29c47 70438f0 4a29c47 70438f0 427ce39 6d56dd1 427ce39 9f7c374 427ce39 70438f0 427ce39 4a29c47 427ce39 70438f0 1461032 70438f0 1461032 70438f0 1461032 70438f0 0724301 5b655f4 70438f0 427ce39 70438f0 3c30a0a 70438f0 427ce39 99ff812 8c68b8b 70438f0 8c68b8b 70438f0 8c68b8b 7cf016f 8c68b8b 70438f0 8c68b8b 7cf016f 8c68b8b 70438f0 8c68b8b 6d56dd1 70438f0 7cf016f 70438f0 427ce39 4a29c47 427ce39 70438f0 a3f71ba 70438f0 4a29c47 70438f0 4a29c47 70438f0 4a29c47 99ff812 7cf016f 06b904d 99ff812 8c68b8b 7cf016f 70438f0 4a29c47 5dddf57 4417549 731f4bf 06b904d 427ce39 6dfc92e 427ce39 a3f71ba 70438f0 427ce39 e045021 427ce39 99ff812 8c68b8b 7cf016f 427ce39 99ff812 8c68b8b 7cf016f 427ce39 99ff812 427ce39 233e4b4 70438f0 427ce39 8c68b8b 70438f0 8c68b8b 744c18a 7cf016f 8c68b8b 70438f0 8c68b8b 7cf016f 8c68b8b 427ce39 e045021 427ce39 e045021 427ce39 7cf016f 427ce39 70438f0 427ce39 8c68b8b 7cf016f 70438f0 7cf016f 427ce39 8c68b8b 427ce39 8c68b8b 427ce39 e045021 427ce39 70438f0 427ce39 8c68b8b 427ce39 70438f0 427ce39 8c68b8b 7cf016f 427ce39 e045021 427ce39 70438f0 427ce39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 |
import spaces
import boto3
from botocore.exceptions import NoCredentialsError, ClientError
from botocore.client import Config
import os, pathlib
CACHE_ROOT = "/home/user/app/cache" # any folder you own
os.environ.update(
TORCH_HOME = f"{CACHE_ROOT}/torch",
XDG_CACHE_HOME = f"{CACHE_ROOT}/xdg", # torch fallback
PYANNOTE_CACHE = f"{CACHE_ROOT}/pyannote",
HF_HOME = f"{CACHE_ROOT}/huggingface",
TRANSFORMERS_CACHE= f"{CACHE_ROOT}/transformers",
MPLCONFIGDIR = f"{CACHE_ROOT}/mpl",
)
INITIAL_PROMPT = '''
Use normal punctuation; end sentences properly.
'''
# make sure the directories exist
for path in os.environ.values():
pathlib.Path(path).mkdir(parents=True, exist_ok=True)
import gradio as gr
import torch
import torchaudio
import numpy as np
import pandas as pd
import time
import datetime
import re
import subprocess
import os
import tempfile
import spaces
from faster_whisper import WhisperModel, BatchedInferencePipeline
from faster_whisper.vad import VadOptions
import requests
import base64
from pyannote.audio import Pipeline, Inference, Model
from pyannote.core import Segment
import os, sys, importlib.util, pathlib, ctypes, tempfile, wave, math
import json
import webrtcvad
spec = importlib.util.find_spec("nvidia.cudnn")
if spec is None:
sys.exit("β nvidia-cudnn-cu12 wheel not found. Run: pip install nvidia-cudnn-cu12")
cudnn_dir = pathlib.Path(spec.origin).parent / "lib"
cnn_so = cudnn_dir / "libcudnn_cnn.so.9"
try:
ctypes.CDLL(cnn_so, mode=ctypes.RTLD_GLOBAL)
print(f"β Pre-loaded {cnn_so}")
except OSError as e:
sys.exit(f"β Could not load {cnn_so} : {e}")
S3_ENDPOINT = os.getenv("S3_ENDPOINT")
S3_ACCESS_KEY = os.getenv("S3_ACCESS_KEY")
S3_SECRET_KEY = os.getenv("S3_SECRET_KEY")
# Function to upload file to Cloudflare R2
def upload_data_to_r2(data, bucket_name, object_name, content_type='application/octet-stream'):
"""
Upload data directly to a Cloudflare R2 bucket.
:param data: Data to upload (bytes or string).
:param bucket_name: Name of the R2 bucket.
:param object_name: Name of the object to save in the bucket.
:param content_type: MIME type of the data.
:return: True if data was uploaded, else False.
"""
try:
# Convert string to bytes if necessary
if isinstance(data, str):
data = data.encode('utf-8')
# Initialize a session using Cloudflare R2 credentials
session = boto3.session.Session()
s3 = session.client('s3',
endpoint_url=f'https://{S3_ENDPOINT}',
aws_access_key_id=S3_ACCESS_KEY,
aws_secret_access_key=S3_SECRET_KEY,
config = Config(s3={"addressing_style": "virtual", 'payload_signing_enabled': False}, signature_version='v4',
request_checksum_calculation='when_required',
response_checksum_validation='when_required',),
)
# Upload the data to R2 bucket
s3.put_object(
Bucket=bucket_name,
Key=object_name,
Body=data,
ContentType=content_type,
ContentLength=len(data), # make length explicit to avoid streaming
)
print(f"Data uploaded to R2 bucket '{bucket_name}' as '{object_name}'")
return True
except NoCredentialsError:
print("Credentials not available")
return False
except ClientError as e:
print(f"Failed to upload data to R2 bucket: {e}")
return False
except Exception as e:
print(f"An unexpected error occurred: {e}")
return False
from huggingface_hub import snapshot_download
MODEL_REPO = "deepdml/faster-whisper-large-v3-turbo-ct2" # CT2 format
LOCAL_DIR = f"{CACHE_ROOT}/whisper_turbo"
# -----------------------------------------------------------------------------
# Audio preprocess helper (from input_and_preprocess rule)
# -----------------------------------------------------------------------------
TRIM_THRESHOLD_MS = 10_000 # 10 seconds
DEFAULT_PAD_MS = 250 # safety context around detected speech
FRAME_MS = 30 # VAD frame
HANG_MS = 240 # hangover (keep speech "on" after silence)
VAD_LEVEL = 2 # 0-3
def _decode_chunk_to_pcm(task: dict) -> bytes:
"""Use ffmpeg to decode the chunk to s16le mono @ 16k PCM bytes."""
src = task["source_uri"]
ing = task["ingest_recipe"]
seek = task["ffmpeg_seek"]
cmd = [
"ffmpeg", "-nostdin", "-hide_banner", "-v", "error",
"-ss", f"{max(0.0, float(seek['pre_ss_sec'])):.3f}",
"-i", src,
"-map", "0:a:0",
"-ss", f"{float(seek['post_ss_sec']):.2f}",
"-t", f"{float(seek['t_sec']):.3f}",
]
# Optional L/R extraction
if ing.get("channel_extract_filter"):
cmd += ["-af", ing["channel_extract_filter"]]
# Force mono 16k s16le to stdout
cmd += ["-ar", "16000", "-ac", "1", "-c:a", "pcm_s16le", "-f", "s16le", "pipe:1"]
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
pcm, err = p.communicate()
if p.returncode != 0:
raise RuntimeError(f"ffmpeg failed: {err.decode('utf-8', 'ignore')}")
return pcm
def _find_head_tail_speech_ms(
pcm: bytes,
sr: int = 16000,
frame_ms: int = FRAME_MS,
vad_level: int = VAD_LEVEL,
hang_ms: int = HANG_MS,
):
"""Return (first_ms, last_ms) speech boundaries using webrtcvad with hangover."""
if not pcm:
return None, None
vad = webrtcvad.Vad(int(vad_level))
bpf = 2 # bytes per sample (s16)
samples_per_ms = sr // 1000 # 16
bytes_per_frame = samples_per_ms * bpf * frame_ms
n_frames = len(pcm) // bytes_per_frame
if n_frames == 0:
return None, None
first_ms, last_ms = None, None
t_ms = 0
in_speech = False
silence_run = 0
view = memoryview(pcm)[: n_frames * bytes_per_frame]
for i in range(n_frames):
frame = view[i * bytes_per_frame : (i + 1) * bytes_per_frame]
if vad.is_speech(frame, sr):
if first_ms is None:
first_ms = t_ms
in_speech = True
silence_run = 0
else:
if in_speech:
silence_run += frame_ms
if silence_run >= hang_ms:
last_ms = t_ms - (silence_run - hang_ms)
in_speech = False
silence_run = 0
t_ms += frame_ms
if in_speech:
last_ms = t_ms
return first_ms, last_ms
def _write_wav(path: str, pcm: bytes, sr: int = 16000):
os.makedirs(os.path.dirname(path), exist_ok=True)
with wave.open(path, "wb") as w:
w.setnchannels(1)
w.setsampwidth(2) # s16
w.setframerate(sr)
w.writeframes(pcm)
def prepare_and_save_audio_for_model(task: dict, out_dir: str) -> dict:
"""
1) Decode chunk to mono 16k PCM.
2) Run VAD to locate head/tail silence.
3) Trim only if head or tail >= 10s.
4) Save the (possibly trimmed) WAV to local file.
5) Return timing metadata, including 'trimmed_start_ms' to preserve global timestamps.
"""
# 0) Names & constants
sr = 16000
bpf = 2
samples_per_ms = sr // 1000
def bytes_from_ms(ms: int) -> int:
return int(ms * samples_per_ms) * bpf
ch = task["channel"]
ck = task["chunk"]
job = task.get("job_id", "job")
idx = str(ck["idx"])
# 1) Decode chunk
pcm = _decode_chunk_to_pcm(task)
planned_dur_ms = int(ck["dur_ms"])
# 2) VAD head/tail detection
first_ms, last_ms = _find_head_tail_speech_ms(pcm, sr=sr)
head_sil_ms = int(first_ms) if first_ms is not None else planned_dur_ms
tail_sil_ms = int(planned_dur_ms - last_ms) if last_ms is not None else planned_dur_ms
# 3) Decide trimming (only if head or tail >= 10s)
trim_applied = False
eff_start_ms = 0
eff_end_ms = planned_dur_ms
trimmed_pcm = pcm
if (head_sil_ms >= TRIM_THRESHOLD_MS) or (tail_sil_ms >= TRIM_THRESHOLD_MS):
# If no speech found at all, mark skip
if first_ms is None or last_ms is None or last_ms <= first_ms:
out_wav_path = os.path.join(out_dir, f"{job}_{ch}_{idx}_nospeech.wav")
_write_wav(out_wav_path, b"", sr)
return {
"out_wav_path": out_wav_path,
"sr": sr,
"trim_applied": False,
"trimmed_start_ms": 0,
"head_silence_ms": head_sil_ms,
"tail_silence_ms": tail_sil_ms,
"effective_start_ms": 0,
"effective_dur_ms": 0,
"abs_start_ms": ck["global_offset_ms"],
"chunk_idx": idx,
"channel": ch,
"skip": True,
}
# Apply padding & slice
start_ms = max(0, int(first_ms) - DEFAULT_PAD_MS)
end_ms = min(planned_dur_ms, int(last_ms) + DEFAULT_PAD_MS)
if end_ms > start_ms:
eff_start_ms = start_ms
eff_end_ms = end_ms
trimmed_pcm = pcm[bytes_from_ms(start_ms) : bytes_from_ms(end_ms)]
trim_applied = True
# 4) Write WAV to local file (trimmed or original)
tag = "trim" if trim_applied else "full"
out_wav_path = os.path.join(out_dir, f"{job}_{ch}_{idx}_{tag}.wav")
_write_wav(out_wav_path, trimmed_pcm, sr)
# 5) Return metadata
return {
"out_wav_path": out_wav_path,
"sr": sr,
"trim_applied": trim_applied,
"trimmed_start_ms": eff_start_ms if trim_applied else 0,
"head_silence_ms": head_sil_ms,
"tail_silence_ms": tail_sil_ms,
"effective_start_ms": eff_start_ms,
"effective_dur_ms": eff_end_ms - eff_start_ms,
"abs_start_ms": int(ck["global_offset_ms"]) + eff_start_ms,
"chunk_idx": idx,
"channel": ch,
"job_id": job,
"skip": False if (trim_applied or len(pcm) > 0) else True,
}
# Download once; later runs are instant
snapshot_download(
repo_id=MODEL_REPO,
local_dir=LOCAL_DIR,
local_dir_use_symlinks=True, # saves disk space
resume_download=True
)
model_cache_path = LOCAL_DIR # <ββ this is what we pass to WhisperModel
# Lazy global holder ----------------------------------------------------------
_whisper = None
_batched_whisper = None
_diarizer = None
_embedder = None
# Create global diarization pipeline
try:
print("Loading diarization model...")
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.set_float32_matmul_precision('high')
_diarizer = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=os.getenv("HF_TOKEN"),
).to(torch.device("cuda"))
print("Diarization model loaded successfully")
except Exception as e:
import traceback
traceback.print_exc()
print(f"Could not load diarization model: {e}")
_diarizer = None
@spaces.GPU # GPU is guaranteed to exist *inside* this function
def _load_models():
global _whisper, _batched_whisper, _diarizer
if _whisper is None:
print("Loading Whisper model...")
_whisper = WhisperModel(
model_cache_path,
device="cuda",
compute_type="float16",
)
# Create batched inference pipeline for improved performance
_batched_whisper = BatchedInferencePipeline(model=_whisper)
print("Whisper model and batched pipeline loaded successfully")
return _whisper, _batched_whisper, _diarizer
# -----------------------------------------------------------------------------
class WhisperTranscriber:
def __init__(self):
# do **not** create the models here!
pass
def preprocess_from_task_json(self, task_json: str) -> dict:
"""Parse task JSON and run prepare_and_save_audio_for_model, returning metadata."""
try:
task = json.loads(task_json)
except Exception as e:
raise RuntimeError(f"Invalid JSON: {e}")
out_dir = os.path.join(CACHE_ROOT, "preprocessed")
os.makedirs(out_dir, exist_ok=True)
meta = prepare_and_save_audio_for_model(task, out_dir)
return meta
@spaces.GPU # each call gets a GPU slice
def transcribe_full_audio(self, audio_path, language=None, translate=False, prompt=None, batch_size=16, base_offset_s: float = 0.0):
"""Transcribe the entire audio file without speaker diarization using batched inference"""
whisper, batched_whisper, _ = _load_models() # models live on the GPU
print(f"Transcribing full audio with batch size {batch_size}...")
start_time = time.time()
# Prepare options for batched inference
options = dict(
language=language,
beam_size=5,
vad_filter=True, # VAD is enabled by default for batched transcription
vad_parameters=VadOptions(
max_speech_duration_s=whisper.feature_extractor.chunk_length,
min_speech_duration_ms=150, # ignore ultra-short blips
min_silence_duration_ms=150, # split on short Mandarin pauses (if supported) speech_pad_ms=100,
threshold=0.25,
neg_threshold=0.2,
),
word_timestamps=True,
initial_prompt=prompt,
condition_on_previous_text=False, # avoid runaway context
language_detection_segments=1,
task="translate" if translate else "transcribe",
)
if batch_size > 1:
# Use batched inference for better performance
segments, transcript_info = batched_whisper.transcribe(
audio_path,
batch_size=batch_size,
**options
)
else:
segments, transcript_info = whisper.transcribe(
audio_path,
**options
)
segments = list(segments)
detected_language = transcript_info.language
print("Detected language: ", detected_language, "segments: ", len(segments))
# Process segments
results = []
for seg in segments:
# Create result entry with detailed format
words_list = []
if seg.words:
for word in seg.words:
words_list.append({
"start": float(word.start) + float(base_offset_s),
"end": float(word.end) + float(base_offset_s),
"word": word.word,
"probability": word.probability,
"speaker": "SPEAKER_00" # No speaker identification in full transcription
})
results.append({
"start": float(seg.start) + float(base_offset_s),
"end": float(seg.end) + float(base_offset_s),
"text": seg.text,
"speaker": "SPEAKER_00", # Single speaker assumption
"avg_logprob": seg.avg_logprob,
"words": words_list,
"duration": float(seg.end - seg.start)
})
transcription_time = time.time() - start_time
print(f"Full audio transcribed in {transcription_time:.2f} seconds using batch size {batch_size}")
#print(results)
return results, detected_language
# Removed audio cutting; transcription is done once on the full (preprocessed) audio
@spaces.GPU # each call gets a GPU slice
# Removed segment-wise transcription; using single full-audio transcription
@spaces.GPU # each call gets a GPU slice
def perform_diarization(self, audio_path, num_speakers=None, base_offset_s: float = 0.0):
"""Perform speaker diarization; return segments with global timestamps and per-speaker embeddings."""
_, _, diarizer = _load_models() # models live on the GPU
if diarizer is None:
print("Diarization model not available, creating single speaker segment")
# Load audio to get duration
waveform, sample_rate = torchaudio.load(audio_path)
duration = waveform.shape[1] / sample_rate
# Try to compute a single-speaker embedding
speaker_embeddings = {}
try:
embedder = self._load_embedder()
# Provide waveform as (channel, time) and pad if too short
min_embed_duration_sec = 3.0
min_samples = int(min_embed_duration_sec * sample_rate)
if waveform.shape[1] < min_samples:
pad_len = min_samples - waveform.shape[1]
pad = torch.zeros(waveform.shape[0], pad_len, dtype=waveform.dtype, device=waveform.device)
waveform = torch.cat([waveform, pad], dim=1)
emb = embedder({"waveform": waveform, "sample_rate": sample_rate})
speaker_embeddings["SPEAKER_00"] = emb.squeeze().tolist()
except Exception:
pass
return [{
"start": 0.0 + float(base_offset_s),
"end": duration + float(base_offset_s),
"speaker": "SPEAKER_00"
}], 1, speaker_embeddings
print("Starting diarization...")
start_time = time.time()
# Load audio for diarization
waveform, sample_rate = torchaudio.load(audio_path)
# Perform diarization
diarization = diarizer(
{"waveform": waveform, "sample_rate": sample_rate},
num_speakers=num_speakers,
)
# Convert to list format
diarize_segments = []
diarization_list = list(diarization.itertracks(yield_label=True))
#print(diarization_list)
for turn, _, speaker in diarization_list:
diarize_segments.append({
"start": float(turn.start) + float(base_offset_s),
"end": float(turn.end) + float(base_offset_s),
"speaker": speaker
})
unique_speakers = {speaker for segment in diarize_segments for speaker in [segment["speaker"]]}
detected_num_speakers = len(unique_speakers)
# Compute per-speaker embeddings by averaging segment embeddings
speaker_embeddings = {}
try:
embedder = self._load_embedder()
spk_to_embs = {spk: [] for spk in unique_speakers}
# Primary path: slice in-memory waveform and zero-pad short segments
min_embed_duration_sec = 3.0
audio_duration_sec = float(waveform.shape[1]) / float(sample_rate)
for turn, _, speaker in diarization_list:
seg_start = float(turn.start)
seg_end = float(turn.end)
if seg_end <= seg_start:
continue
start_sample = max(0, int(seg_start * sample_rate))
end_sample = min(waveform.shape[1], int(seg_end * sample_rate))
if end_sample <= start_sample:
continue
seg_wav = waveform[:, start_sample:end_sample].contiguous()
min_samples = int(min_embed_duration_sec * sample_rate)
if seg_wav.shape[1] < min_samples:
pad_len = min_samples - seg_wav.shape[1]
pad = torch.zeros(seg_wav.shape[0], pad_len, dtype=seg_wav.dtype, device=seg_wav.device)
seg_wav = torch.cat([seg_wav, pad], dim=1)
try:
emb = embedder({"waveform": seg_wav, "sample_rate": sample_rate})
except Exception:
# Fallback: use crop on the file with expanded window to minimum duration
desired_end = min(seg_start + min_embed_duration_sec, audio_duration_sec)
desired_start = max(0.0, desired_end - min_embed_duration_sec)
emb = embedder.crop(audio_path, Segment(desired_start, desired_end))
spk_to_embs[speaker].append(emb.squeeze())
# average
for spk, embs in spk_to_embs.items():
if len(embs) == 0:
continue
# stack and mean
try:
import torch as _torch
embs_tensor = _torch.stack([_torch.as_tensor(e) for e in embs], dim=0)
centroid = embs_tensor.mean(dim=0)
# L2 normalize
centroid = centroid / (centroid.norm(p=2) + 1e-12)
speaker_embeddings[spk] = centroid.cpu().tolist()
except Exception:
# fallback to first embedding
speaker_embeddings[spk] = embs[0].cpu().tolist()
#print(speaker_embeddings[spk])
except Exception as e:
print(f"Error during embedding calculation: {e}")
print(f"Diarization segments: {diarize_segments}")
pass
diarization_time = time.time() - start_time
print(f"Diarization completed in {diarization_time:.2f} seconds")
return diarize_segments, detected_num_speakers, speaker_embeddings
def _load_embedder(self):
"""Lazy-load speaker embedding inference model on GPU."""
global _embedder
if _embedder is None:
# window="whole" to compute one embedding per provided chunk
token = os.getenv("HF_TOKEN")
model = Model.from_pretrained("pyannote/embedding", use_auth_token=token)
_embedder = Inference(model, window="whole", device=torch.device("cuda"))
return _embedder
def assign_speakers_to_transcription(self, transcription_results, diarization_segments):
"""Assign speakers to words and segments based on overlap with diarization segments."""
if not diarization_segments:
return transcription_results
# simple helper to find speaker at given time
def speaker_at(t: float):
for seg in diarization_segments:
if seg["start"] <= t < seg["end"]:
return seg["speaker"]
# if not inside, return closest segment's speaker
closest = None
best = float("inf")
for seg in diarization_segments:
if t < seg["start"]:
d = seg["start"] - t
elif t > seg["end"]:
d = t - seg["end"]
else:
d = 0.0
if d < best:
best = d
closest = seg
return closest["speaker"] if closest else "SPEAKER_00"
for seg in transcription_results:
# Assign per-word speakers
if seg.get("words"):
speaker_counts = {}
for w in seg["words"]:
mid = (float(w["start"]) + float(w["end"])) / 2.0
spk = speaker_at(mid)
w["speaker"] = spk
speaker_counts[spk] = speaker_counts.get(spk, 0) + (float(w["end"]) - float(w["start"]))
# Segment speaker = speaker with max accumulated word duration
if speaker_counts:
seg["speaker"] = max(speaker_counts.items(), key=lambda kv: kv[1])[0]
else:
mid = (float(seg["start"]) + float(seg["end"])) / 2.0
seg["speaker"] = speaker_at(mid)
return transcription_results
def group_segments_by_speaker(self, segments, max_gap=1.0, max_duration=30.0):
"""Group consecutive segments from the same speaker"""
if not segments:
return segments
grouped_segments = []
current_group = segments[0].copy()
sentence_end_pattern = r"[.!?]+"
for segment in segments[1:]:
time_gap = segment["start"] - current_group["end"]
current_duration = current_group["end"] - current_group["start"]
# Conditions for combining segments
can_combine = (
segment["speaker"] == current_group["speaker"] and
time_gap <= max_gap and
current_duration < max_duration and
not re.search(sentence_end_pattern, current_group["text"][-1:])
)
if can_combine:
# Merge segments
current_group["end"] = segment["end"]
current_group["text"] += " " + segment["text"]
current_group["words"].extend(segment["words"])
current_group["duration"] = current_group["end"] - current_group["start"]
else:
# Start new group
grouped_segments.append(current_group)
current_group = segment.copy()
grouped_segments.append(current_group)
# Clean up text
for segment in grouped_segments:
segment["text"] = re.sub(r"\s+", " ", segment["text"]).strip()
segment["text"] = re.sub(r"\s+([.,!?])", r"\1", segment["text"])
return grouped_segments
@spaces.GPU # each call gets a GPU slice
def process_audio_full(self, task_json, language=None, translate=False, prompt=None, group_segments=True, batch_size=16):
"""Process a single chunk using task JSON (no diarization)."""
if not task_json or not str(task_json).strip():
return {"error": "No JSON provided"}
pre_meta = None
try:
print("Starting full transcription pipeline...")
# Step 1: Preprocess per chunk JSON
print("Preprocessing chunk JSON...")
pre_meta = self.preprocess_from_task_json(task_json)
if pre_meta.get("skip"):
return {"segments": [], "language": "unknown", "num_speakers": 1, "transcription_method": "full_audio_batched", "batch_size": batch_size}
wav_path = pre_meta["out_wav_path"]
# Adjust timestamps by trimmed_start_ms: abs_start_ms is already global start for saved file
base_offset_s = float(pre_meta.get("abs_start_ms", 0)) / 1000.0
# Step 2: Transcribe the entire audio with batching
transcription_results, detected_language = self.transcribe_full_audio(
wav_path, language, translate, prompt, batch_size, base_offset_s=base_offset_s
)
# Step 3: Group segments if requested (based on time gaps and sentence endings)
if group_segments:
transcription_results = self.group_segments_by_speaker(transcription_results)
# Step 4: Return results
return {
"segments": transcription_results,
"language": detected_language,
"num_speakers": 1, # Single speaker assumption
"transcription_method": "full_audio_batched",
"batch_size": batch_size
}
except Exception as e:
import traceback
traceback.print_exc()
return {"error": f"Processing failed: {str(e)}"}
finally:
# Clean up preprocessed wav
if pre_meta and pre_meta.get("out_wav_path") and os.path.exists(pre_meta["out_wav_path"]):
try:
os.unlink(pre_meta["out_wav_path"])
except Exception:
pass
@spaces.GPU # each call gets a GPU slice
def process_audio(self, task_json, num_speakers=None, language=None,
translate=False, prompt=None, group_segments=True, batch_size=8):
"""Main processing function with diarization using task JSON for a single chunk.
Transcribes full (preprocessed) audio once, performs diarization, merges speakers into transcription.
"""
if not task_json or not str(task_json).strip():
return {"error": "No JSON provided"}
pre_meta = None
try:
print("Starting new processing pipeline...")
# Step 1: Preprocess per chunk JSON
print("Preprocessing chunk JSON...")
pre_meta = self.preprocess_from_task_json(task_json)
if pre_meta.get("skip"):
return {"segments": [], "language": "unknown", "num_speakers": 0, "transcription_method": "diarized_segments_batched", "batch_size": batch_size}
wav_path = pre_meta["out_wav_path"]
base_offset_s = float(pre_meta.get("abs_start_ms", 0)) / 1000.0
# Step 2: Transcribe full audio once
transcription_results, detected_language = self.transcribe_full_audio(
wav_path, language, translate, prompt, batch_size, base_offset_s=base_offset_s
)
# Step 3: Perform diarization with global offset
diarization_segments, detected_num_speakers, speaker_embeddings = self.perform_diarization(
wav_path, num_speakers, base_offset_s=base_offset_s
)
# Step 4: Merge diarization into transcription (assign speakers)
transcription_results = self.assign_speakers_to_transcription(transcription_results, diarization_segments)
# Step 5: Group segments if requested
if group_segments:
transcription_results = self.group_segments_by_speaker(transcription_results)
# Step 6: Return results
result = {
"segments": transcription_results,
"language": detected_language,
"num_speakers": detected_num_speakers,
"transcription_method": "diarized_segments_batched",
"batch_size": batch_size,
"speaker_embeddings": speaker_embeddings,
}
job_id = pre_meta["job_id"]
task_id = pre_meta["chunk_idx"]
filekey = f"ai-transcribe/split/{job_id}-{task_id}.json"
ret = upload_data_to_r2(json.dumps(result), "intermediate", filekey)
if ret:
return {"filekey": filekey}
else:
return {"error": "Failed to upload to R2"}
except Exception as e:
import traceback
traceback.print_exc()
return {"error": f"Processing failed: {str(e)}"}
finally:
# Clean up preprocessed wav
if pre_meta and pre_meta.get("out_wav_path") and os.path.exists(pre_meta["out_wav_path"]):
try:
os.unlink(pre_meta["out_wav_path"])
except Exception:
pass
# Initialize transcriber
transcriber = WhisperTranscriber()
def format_segments_for_display(result):
"""Format segments for display in Gradio"""
if "error" in result:
return f"β Error: {result['error']}"
segments = result.get("segments", [])
language = result.get("language", "unknown")
num_speakers = result.get("num_speakers", 1)
method = result.get("transcription_method", "unknown")
batch_size = result.get("batch_size", "N/A")
output = f"π― **Detection Results:**\n"
output += f"- Language: {language}\n"
output += f"- Speakers: {num_speakers}\n"
output += f"- Segments: {len(segments)}\n"
output += f"- Method: {method}\n"
output += f"- Batch Size: {batch_size}\n\n"
output += "π **Transcription:**\n\n"
for i, segment in enumerate(segments, 1):
start_time = str(datetime.timedelta(seconds=int(segment["start"])))
end_time = str(datetime.timedelta(seconds=int(segment["end"])))
speaker = segment.get("speaker", "SPEAKER_00")
text = segment["text"]
output += f"**{speaker}** ({start_time} β {end_time})\n"
output += f"{text}\n\n"
return output
@spaces.GPU
def process_audio_gradio(task_json, num_speakers, language, translate, prompt, group_segments, use_diarization, batch_size):
"""Gradio interface function"""
if use_diarization:
result = transcriber.process_audio(
task_json=task_json,
num_speakers=num_speakers if num_speakers > 0 else None,
language=language if language != "auto" else None,
translate=translate,
prompt=prompt if prompt and prompt.strip() else None,
group_segments=group_segments,
batch_size=batch_size
)
else:
result = transcriber.process_audio_full(
task_json=task_json,
language=language if language != "auto" else None,
translate=translate,
prompt=prompt if prompt and prompt.strip() else None,
group_segments=group_segments,
batch_size=batch_size
)
formatted_output = format_segments_for_display(result)
return formatted_output, result
# Create Gradio interface
demo = gr.Blocks(
title="ποΈ Whisper Transcription with Speaker Diarization",
theme="default"
)
with demo:
gr.Markdown("""
# ποΈ Advanced Audio Transcription & Speaker Diarization
Upload an audio file to get accurate transcription with speaker identification, powered by:
- **Faster-Whisper Large V3 Turbo** with batched inference for optimal performance
- **Pyannote 3.1** for speaker diarization
- **ZeroGPU** acceleration for optimal performance
""")
with gr.Row():
with gr.Column():
task_json_input = gr.Textbox(
label="π§Ύ Paste Task JSON",
placeholder="Paste the per-chunk task JSON here...",
lines=16,
)
with gr.Accordion("βοΈ Advanced Settings", open=False):
use_diarization = gr.Checkbox(
label="Enable Speaker Diarization",
value=True,
info="Uncheck for faster transcription without speaker identification"
)
batch_size = gr.Slider(
minimum=1,
maximum=128,
value=16,
step=1,
label="Batch Size",
info="Higher values = faster processing but more GPU memory usage. Recommended: 8-24"
)
num_speakers = gr.Slider(
minimum=0,
maximum=20,
value=0,
step=1,
label="Number of Speakers (0 = auto-detect)",
visible=True
)
language = gr.Dropdown(
choices=["auto", "en", "es", "fr", "de", "it", "pt", "ru", "ja", "ko", "zh"],
value="auto",
label="Language"
)
translate = gr.Checkbox(
label="Translate to English",
value=False
)
prompt = gr.Textbox(
label="Vocabulary Prompt (names, acronyms, etc.)",
placeholder="Enter names, technical terms, or context...",
lines=2
)
group_segments = gr.Checkbox(
label="Group segments by speaker/time",
value=True
)
process_btn = gr.Button("π Transcribe Audio", variant="primary")
with gr.Column():
output_text = gr.Markdown(
label="π Transcription Results",
value="Paste task JSON and click 'Transcribe Audio' to get started!"
)
output_json = gr.JSON(
label="π§ Raw Output (JSON)",
visible=False
)
# Update visibility of num_speakers based on diarization toggle
use_diarization.change(
fn=lambda x: gr.update(visible=x),
inputs=[use_diarization],
outputs=[num_speakers]
)
# Event handlers
process_btn.click(
fn=process_audio_gradio,
inputs=[
task_json_input,
num_speakers,
language,
translate,
prompt,
group_segments,
use_diarization,
batch_size
],
outputs=[output_text, output_json]
)
# Examples
gr.Markdown("### π Usage Tips:")
gr.Markdown("""
- Paste a single-chunk task JSON matching the preprocess schema
- Batch Size: Higher values (16-24) = faster but uses more GPU memory
- Speaker diarization: Enable for speaker identification (slower)
- Languages: Supports 100+ languages with auto-detection
- Vocabulary: Add names and technical terms in the prompt for better accuracy
""")
if __name__ == "__main__":
demo.launch(debug=True)
|