Spaces:
Sleeping
Sleeping
File size: 7,143 Bytes
ee86994 152508e 841fa30 3c70d1e 3c2969a 3c70d1e 152508e 841fa30 152508e e648c77 152508e 841fa30 ee86994 841fa30 152508e b9ef50d 152508e 841fa30 152508e 841fa30 152508e 841fa30 152508e e648c77 152508e f1ebe2a 152508e f1ebe2a 152508e e648c77 3c70d1e e648c77 152508e e648c77 27f5b0b e648c77 152508e 3c70d1e 841fa30 152508e 841fa30 3c70d1e 841fa30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import gradio as gr
import requests
import base64
from PIL import Image
from io import BytesIO
print("=== DEBUG: Starting app.py ===")
# Get example images
import os
example_dir = os.path.join(os.environ.get('HOME', '/home/user'), 'app', 'example_images')
# example_dir = "example_images" # Relative path since it's in the same directory
example_images = []
if os.path.exists(example_dir):
for filename in os.listdir(example_dir):
if filename.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp')):
example_images.append(os.path.join(example_dir, filename))
print(f"Found {len(example_images)} example images")
def encode_image_to_base64(image: Image.Image) -> str:
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return f"data:image/jpeg;base64,{img_str}"
def query_vllm_api(image, temperature, max_tokens=12_000):
print(f"=== DEBUG: query_vllm_api called with image={image is not None}, temp={temperature} ===")
if image is None:
return "No image provided", "No image provided", "Please upload an image first."
try:
messages = []
# Optional: Resize image if needed (to avoid huge uploads)
max_size = 2048
if max(image.size) > max_size:
ratio = max_size / max(image.size)
new_size = tuple(int(dim * ratio) for dim in image.size)
image = image.resize(new_size, Image.Resampling.LANCZOS)
image_b64 = encode_image_to_base64(image)
messages.append({
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": image_b64}}
]
})
payload = {
"model": "numind/NuMarkdown-8B-Thinking",
"messages": messages,
"max_tokens": max_tokens,
"temperature": temperature
}
print("=== DEBUG: About to make vLLM API request ===")
response = requests.post(
"http://localhost:8000/v1/chat/completions",
json=payload,
timeout=60
)
response.raise_for_status()
data = response.json()
result = data["choices"][0]["message"]["content"]
# Handle the thinking/answer parsing
try:
reasoning = result.split("<think>")[1].split("</think>")[0]
answer = result.split("<answer>")[1].split("</answer>")[0]
except IndexError:
# If no thinking tags, return the full result
reasoning = "No thinking trace found"
answer = result
return reasoning, answer, answer
except requests.exceptions.RequestException as e:
error_msg = f"API request failed: {e}"
print(f"=== DEBUG: Request error: {error_msg} ===")
return error_msg, error_msg, error_msg
except Exception as e:
error_msg = f"Unexpected error: {e}"
print(f"=== DEBUG: Unexpected error: {error_msg} ===")
return error_msg, error_msg, error_msg
print("=== DEBUG: Creating Gradio interface ===")
with gr.Blocks(title="NuMarkdown-8B-Thinking", theme=gr.themes.Soft(), css="""
* {
font-family: 'Inter', 'Segoe UI', 'Roboto', 'Helvetica Neue', Arial, sans-serif !important;
}
""") as demo:
gr.HTML("""
<div style="text-align: center; padding: 20px; background: linear-gradient(90deg, #667eea 0%, #764ba2 100%); border-radius: 10px; margin-bottom: 20px;">
<h1 style="color: white; margin: 0; font-size: 2.5em; font-weight: bold;">ποΈ NuMarkdown-8B-Thinking</h1>
<p style="color: rgba(255,255,255,0.9); margin: 10px 0; font-size: 1.2em;">Upload an image to convert to Markdown!</p>
<div style="margin-top: 15px;">
<a href="https://nuextract.ai/" style="color: white; text-decoration: none; margin: 0 10px; font-weight: 500;">π₯οΈ API / Platform</a>
<span style="color: rgba(255,255,255,0.7);">|</span>
<a href="https://discord.gg/3tsEtJNCDe" style="color: white; text-decoration: none; margin: 0 10px; font-weight: 500;">π£οΈ Discord</a>
<span style="color: rgba(255,255,255,0.7);">|</span>
<a href="https://github.com/numindai/NuMarkdown" style="color: white; text-decoration: none; margin: 0 10px; font-weight: 500;">π GitHub</a>
<span style="color: rgba(255,255,255,0.7);">|</span>
<a href="https://huggingface.co/numind/NuMarkdown-8B-Thinking" style="color: white; text-decoration: none; margin: 0 10px; font-weight: 500;">π€ Model</a>
</div>
</div>
<p>NuMarkdown-8B-Thinking is the first reasoning OCR VLM. It is specifically trained to convert documents into clean Markdown files, well suited for RAG applications. It generates thinking tokens to figure out the layout of the document before generating the Markdown file. It is particularly good at understanding documents with weird layouts and complex tables.</p>
<p>NOTE: In this space we downsize large images and restrict the maximum output of the model, so performance could improve if you run the model yourself.</p>
""")
with gr.Row():
with gr.Column(scale=2):
temperature = gr.Slider(0.1, 1.5, value=0.4, step=0.1, label="Temperature")
btn = gr.Button("Generate Response", variant="primary", size="lg")
img_in = gr.Image(type="pil", label="Upload Image")
with gr.Column(scale=2):
# Debug section - collapsible
with gr.Accordion("π Model Outputs", open=True):
with gr.Tabs():
with gr.TabItem("π§ Thinking Trace"):
thinking = gr.Textbox(
lines=15,
max_lines=25,
show_label=False,
placeholder="The model's reasoning process will appear here..."
)
with gr.TabItem("π Rendered Markdown"):
output = gr.Markdown(label="π Generated Markdown")
with gr.TabItem("π Raw Markdown"):
raw_answer = gr.Textbox(
lines=15,
max_lines=25,
show_label=False,
placeholder="The raw model output will appear here..."
)
btn.click(
query_vllm_api,
inputs=[img_in, temperature],
outputs=[thinking, raw_answer, output],
)
# Add examples if we have any
if example_images:
gr.Examples(
examples=example_images[:5], # Limit to 5 examples
inputs=img_in,
label="πΈ Try these example images"
)
print("=== DEBUG: Gradio interface created ===")
if __name__ == "__main__":
print("=== DEBUG: About to launch Gradio ===")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)
print("=== DEBUG: Gradio launched ===") |