Spaces:
Running
on
A100
Running
on
A100
File size: 9,455 Bytes
a37dccc 7272785 a37dccc 14495d1 a37dccc 14495d1 a37dccc 14495d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import gradio as gr
import torch
import llava
from peft import PeftModel
import os
from huggingface_hub import snapshot_download
# ---------------------------------
# MULTI-TURN MODEL SETUP
# ---------------------------------
MODEL_BASE_MULTI = snapshot_download(repo_id="nvidia/audio-flamingo-3-chat")
# model_multi = llava.load(MODEL_BASE_MULTI, model_base=None, devices=[0])
model_multi = llava.load(MODEL_BASE_MULTI, model_base=None)
model_multi = model_multi.to("cuda")
generation_config_multi = model_multi.default_generation_config
# ---------------------------------
# MULTI-TURN INFERENCE FUNCTION
# ---------------------------------
def multi_turn_chat(user_input, audio_file, history, current_audio):
"""
Handle multi-turn chat interactions with audio context.
Args:
user_input: The user's text message/question about the audio
audio_file: New audio file path if uploaded, otherwise None
history: List of previous conversation turns as (user_msg, bot_response) tuples
current_audio: Path to the currently active audio file in the conversation
Returns:
Tuple of (updated_chatbot_display, updated_history, updated_current_audio)
"""
try:
if audio_file is not None:
current_audio = audio_file # Update state if a new file is uploaded
if current_audio is None:
return history + [("System", "β Please upload an audio file before chatting.")], history, current_audio
sound = llava.Sound(current_audio)
prompt = f"<sound>\n{user_input}"
response = model_multi.generate_content([sound, prompt], generation_config=generation_config_multi)
history.append((user_input, response))
return history, history, current_audio
except Exception as e:
history.append((user_input, f"β Error: {str(e)}"))
return history, history, current_audio
def speech_prompt_infer(audio_prompt_file):
"""
Process speech/audio input and generate a text response.
Args:
audio_prompt_file: Path to the audio file containing the user's speech prompt
Returns:
String containing the model's text response or error message
"""
try:
sound = llava.Sound(audio_prompt_file)
full_prompt = "<sound>"
response = model_multi.generate_content([sound, full_prompt], generation_config=generation_config_multi)
return response
except Exception as e:
return f"β Error: {str(e)}"
# ---------------------------------
# INTERFACE
# ---------------------------------
with gr.Blocks(css="""
.gradio-container {
max-width: 100% !important;
width: 100% !important;
margin: 0 !important;
padding: 0 !important;
}
#component-0, .gr-block.gr-box {
width: 100% !important;
}
.gr-block.gr-box, .gr-column, .gr-row {
padding: 0 !important;
margin: 0 !important;
}
""") as demo:
with gr.Column():
gr.HTML("""
<div align="center">
<img src="https://raw.githubusercontent.com/NVIDIA/audio-flamingo/audio_flamingo_3/static/logo-no-bg.png" alt="Audio Flamingo 3 Logo" width="120" style="margin-bottom: 10px;">
<h2><strong>Audio Flamingo 3</strong></h2>
<p><em>Advancing Audio Intelligence with Fully Open Large Audio-Language Models</em></p>
</div>
<div align="center" style="margin-top: 10px;">
<a href="https://arxiv.org/abs/2507.08128">
<img src="https://img.shields.io/badge/arXiv-2503.03983-AD1C18" alt="arXiv" style="display:inline;">
</a>
<a href="https://research.nvidia.com/labs/adlr/AF3/">
<img src="https://img.shields.io/badge/Demo%20page-228B22" alt="Demo Page" style="display:inline;">
</a>
<a href="https://github.com/NVIDIA/audio-flamingo">
<img src="https://img.shields.io/badge/Github-Audio_Flamingo_3-9C276A" alt="GitHub" style="display:inline;">
</a>
<a href="https://github.com/NVIDIA/audio-flamingo/stargazers">
<img src="https://img.shields.io/github/stars/NVIDIA/audio-flamingo.svg?style=social" alt="GitHub Stars" style="display:inline;">
</a>
</div>
<div align="center" style="display: flex; justify-content: center; margin-top: 10px; flex-wrap: wrap; gap: 5px;">
<a href="https://huggingface.co/nvidia/audio-flamingo-3">
<img src="https://img.shields.io/badge/π€-Checkpoints-ED5A22.svg">
</a>
<a href="https://huggingface.co/nvidia/audio-flamingo-3-chat">
<img src="https://img.shields.io/badge/π€-Checkpoints_(Chat)-ED5A22.svg">
</a>
</div>
<div align="center" style="display: flex; justify-content: center; margin-top: 10px; flex-wrap: wrap; gap: 5px;">
<a href="https://huggingface.co/datasets/nvidia/AudioSkills">
<img src="https://img.shields.io/badge/π€-Dataset:_AudioSkills--XL-ED5A22.svg">
</a>
<a href="https://huggingface.co/datasets/nvidia/LongAudio">
<img src="https://img.shields.io/badge/π€-Dataset:_LongAudio--XL-ED5A22.svg">
</a>
<a href="https://huggingface.co/datasets/nvidia/AF-Chat">
<img src="https://img.shields.io/badge/π€-Dataset:_AF--Chat-ED5A22.svg">
</a>
<a href="https://huggingface.co/datasets/nvidia/AF-Think">
<img src="https://img.shields.io/badge/π€-Dataset:_AF--Think-ED5A22.svg">
</a>
</div>
""")
# gr.Markdown("#### NVIDIA (2025)")
with gr.Tabs():
# ---------------- MULTI-TURN CHAT ----------------
with gr.Tab("π¬ Multi-Turn Chat"):
chatbot = gr.Chatbot(label="Audio Chatbot")
audio_input_multi = gr.Audio(type="filepath", label="Upload or Replace Audio Context")
user_input_multi = gr.Textbox(label="Your message", placeholder="Ask a question about the audio...", lines=8)
btn_multi = gr.Button("Send")
history_state = gr.State([]) # Chat history
current_audio_state = gr.State(None) # Most recent audio file path
btn_multi.click(
fn=multi_turn_chat,
inputs=[user_input_multi, audio_input_multi, history_state, current_audio_state],
outputs=[chatbot, history_state, current_audio_state]
)
gr.Examples(
examples=[
["static/chat/audio1.mp3", "This track feels really peaceful and introspective. What elements make it feel so calming and meditative?"],
["static/chat/audio2.mp3", "Switching gears, this one is super energetic and synthetic. If I wanted to remix the calming folk piece into something closer to this, what would you suggest?"],
],
inputs=[audio_input_multi, user_input_multi],
label="π§ͺ Try Examples"
)
with gr.Tab("π£οΈ Speech Prompt"):
gr.Markdown("Use your **voice** to talk to the model.")
with gr.Row():
with gr.Column():
speech_input = gr.Audio(type="filepath", label="Speak or Upload Audio")
btn_speech = gr.Button("Submit")
gr.Examples(
examples=[
["static/voice/voice_0.mp3"],
["static/voice/voice_1.mp3"],
["static/voice/voice_2.mp3"],
],
inputs=speech_input,
label="π§ͺ Try Examples"
)
with gr.Column():
response_box = gr.Textbox(label="Model Response", lines=15)
btn_speech.click(fn=speech_prompt_infer, inputs=speech_input, outputs=response_box)
# ---------------- ABOUT ----------------
with gr.Tab("π About"):
gr.Markdown("""
### π Overview
**Audio Flamingo 3** is a fully open state-of-the-art (SOTA) large audio-language model that advances reasoning and understanding across speech, sound, and music. AF3 introduces:
(i) AF-Whisper, a unified audio encoder trained using a novel strategy for joint representation learning across all 3 modalities of speech, sound, and music;
(ii) flexible, on-demand thinking, allowing the model to do chain-of-thought reasoning before answering;
(iii) multi-turn, multi-audio chat;
(iv) long audio understanding and reasoning (including speech) up to 10 minutes; and
(v) voice-to-voice interaction.
To enable these capabilities, we propose several large-scale training datasets curated using novel strategies, including AudioSkills-XL, LongAudio-XL, AF-Think, and AF-Chat, and train AF3 with a novel five-stage curriculum-based training strategy. Trained on only open-source audio data, AF3 achieves new SOTA results on over 20+ (long) audio understanding and reasoning benchmarks, surpassing both open-weight and closed-source models trained on much larger datasets.
**Key Features:**
π‘ Audio Flamingo 3 has strong audio, music and speech understanding capabilities.
π‘ Audio Flamingo 3 supports on-demand thinking for chain-of-though reasoning.
π‘ Audio Flamingo 3 supports long audio and speech understanding for audios up to 10 minutes.
π‘ Audio Flamingo 3 can have multi-turn, multi-audio chat with users under complex context.
π‘ Audio Flamingo 3 has voice-to-voice conversation abilities.
""")
gr.Markdown("Β© 2025 NVIDIA | Built with β€οΈ using Gradio + PyTorch")
# -----------------------
# Launch App
# -----------------------
if __name__ == "__main__":
demo.launch(share=True, mcp_server=True) |