File size: 6,613 Bytes
0b03171
12ef7df
0b03171
a28041c
9346693
f5a656a
 
 
0b03171
eaf7016
 
 
 
f5a656a
0b03171
12ef7df
eaf7016
12ef7df
0b03171
ea54579
 
a28041c
0b03171
9346693
 
 
 
 
 
f5a656a
 
eaf7016
 
 
 
 
 
 
 
 
 
0b03171
 
12ef7df
eaf7016
 
 
 
f5a656a
1a71365
9346693
f5a656a
 
eaf7016
 
 
 
 
 
 
9346693
 
1a71365
 
9346693
1a71365
 
 
12ef7df
1a71365
 
 
 
 
 
 
 
 
 
1ed2d99
1a71365
 
 
0b03171
1ed2d99
 
 
 
 
0b03171
 
eaf7016
 
 
1a71365
eaf7016
 
 
 
 
0b03171
 
1c30553
 
 
 
eaf7016
 
 
 
 
 
315c036
eaf7016
 
 
 
 
 
1a71365
eaf7016
1a71365
eaf7016
 
 
 
1a71365
 
 
eaf7016
1a71365
 
 
 
 
 
 
 
 
7d91bc4
1a71365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d91bc4
 
 
 
 
1a71365
eaf7016
 
 
 
 
954cfbc
eaf7016
 
 
 
1a71365
1ed2d99
 
 
 
eaf7016
 
1a71365
1ed2d99
 
 
1a71365
 
 
1ed2d99
 
 
 
1a71365
 
 
1ed2d99
 
 
eaf7016
0b03171
 
 
f5a656a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import gradio as gr
import spaces
import uuid
import torch
from datetime import timedelta
from lhotse import Recording
from lhotse.dataset import DynamicCutSampler
from nemo.collections.speechlm2 import SALM

if torch.cuda.is_available():
    device = torch.device("cuda")
else:
    device = torch.device("cpu")

SAMPLE_RATE = 16000 # Hz
MAX_AUDIO_MINUTES = 120 # wont try to transcribe if longer than this
CHUNK_SECONDS = 40.0  # max audio length seen by the model
BATCH_SIZE = 192  # for parallel transcription of audio longer than CHUNK_SECONDS


model = SALM.from_pretrained("nvidia/canary-qwen-2.5b").bfloat16().eval().to(device)


def timestamp(idx: int):
    b = str(timedelta(seconds= idx      * CHUNK_SECONDS))
    e = str(timedelta(seconds=(idx + 1) * CHUNK_SECONDS))
    return f"[{b} - {e}]"


def as_batches(audio_filepath, utt_id):
    rec = Recording.from_file(audio_filepath, recording_id=utt_id)
    if rec.duration / 60.0 > MAX_AUDIO_MINUTES:
        raise gr.Error(
            f"This demo can transcribe up to {MAX_AUDIO_MINUTES} minutes of audio. "
            "If you wish, you may trim the audio using the Audio viewer in Step 1 "
            "(click on the scissors icon to start trimming audio)."
        )
    cut = rec.resample(SAMPLE_RATE).to_cut()
    if cut.num_channels > 1:
        cut = cut.to_mono(mono_downmix=True)
    return DynamicCutSampler(cut.cut_into_windows(CHUNK_SECONDS), max_cuts=BATCH_SIZE)


@spaces.GPU
def transcribe(audio_filepath):
    if audio_filepath is None:
        raise gr.Error("Please provide some input audio: either upload an audio file or use the microphone")
    utt_id = uuid.uuid4()
    pred_text = []
    pred_text_ts = []
    chunk_idx = 0
    for batch in as_batches(audio_filepath, str(utt_id)):
        audio, audio_lens = batch.load_audio(collate=True)
        with torch.inference_mode():
            output_ids = model.generate(
                prompts=[[{"role": "user", "content": f"Transcribe the following: {model.audio_locator_tag}"}]] * len(batch),
                audios=torch.as_tensor(audio).to(device, non_blocking=True),
                audio_lens=torch.as_tensor(audio_lens).to(device, non_blocking=True),
                max_new_tokens=256,
            )
        texts = [model.tokenizer.ids_to_text(oids) for oids in output_ids.cpu()]
        for t in texts:
            pred_text.append(t)
            pred_text_ts.append(f"{timestamp(chunk_idx)} {t}\n\n")
            chunk_idx += 1
    return ''.join(pred_text_ts), ' '.join(pred_text)


@spaces.GPU
def postprocess(transcript, prompt):
    with torch.inference_mode(), model.llm.disable_adapter():
        output_ids = model.generate(
            prompts=[[{"role": "user", "content": f"{prompt}\n\n{transcript}"}]],
            max_new_tokens=2048,
        )
    ans = model.tokenizer.ids_to_text(output_ids[0].cpu())
    ans = ans.split("<|im_start|>assistant")[-1]  # get rid of the prompt
    if "<think>" in ans:
        ans = ans.split("<think>")[-1]
        thoughts, ans = ans.split("</think>")  # get rid of the thinking
    else:
        thoughts = ""
    return ans.strip(), thoughts

def disable_buttons():
    return gr.update(interactive=False), gr.update(interactive=False)

def enable_buttons():
    return gr.update(interactive=True), gr.update(interactive=True)

with gr.Blocks(
    title="NeMo Canary-Qwen-2.5B Model",
    css="""
        textarea { font-size: 18px;}
        #transcript_box span {
            font-size: 18px;
            font-weight: bold;
        }
    """,
    theme=gr.themes.Default(text_size=gr.themes.sizes.text_lg) # make text slightly bigger (default is text_md )
) as demo:

    gr.HTML(
        "<h1 style='text-align: center'>NeMo Canary-Qwen-2.5B model: Transcribe and prompt</h1>"
        "<p>Canary-Qwen-2.5B is an ASR model capable of transcribing speech to text (ASR mode) and using its inner Qwen3-1.7B LLM for answering questions about the transcript (LLM mode).</p>"
    )

    with gr.Row():
        with gr.Column():
            gr.HTML(
                "<p><b>Step 1:</b> Upload an audio file or record with your microphone.</p>"

                "<p style='color: #A0A0A0;'>This demo supports audio files up to 2 hours long."
            )

            audio_file = gr.Audio(sources=["microphone", "upload"], type="filepath")

        with gr.Column():

            gr.HTML("<p><b>Step 2:</b> Transcribe the audio.</p>")

            asr_button = gr.Button(
                value="Run model",
                variant="primary", # make "primary" so it stands out (default is "secondary")
            )

            transcript_box = gr.Textbox(
                label="Model Transcript",
                elem_id="transcript_box",
            )
            raw_transcript = gr.State()

    with gr.Row():

        with gr.Column():

            gr.HTML("<p><b>Step 3:</b> Prompt the model.</p>")

            prompt_box = gr.Textbox(
                "Give me a TL;DR:",
                label="Prompt",
                elem_id="prompt_box",
            )

        with gr.Column():

            gr.HTML("<p><b>Step 4:</b> See the outcome!</p>")

            llm_button = gr.Button(
                value="Apply the prompt",
                variant="primary", # make "primary" so it stands out (default is "secondary")
            )

            magic_box = gr.Textbox(
                label="Assistant's Response",
                elem_id="magic_box",
            )

            think_box = gr.Textbox(
                label="Assistant's Thinking",
                elem_id="think_box",
            )


    with gr.Row():

        gr.HTML(
            "<p style='text-align: center'>"
                "🐤 <a href='https://huggingface.co/nvidia/canary-qwen-2.5b' target='_blank'>Canary-Qwen-2.5B model</a> | "
                "🧑‍💻 <a href='https://github.com/NVIDIA/NeMo' target='_blank'>NeMo Repository</a>"
            "</p>"
        )

    asr_button.click(
        disable_buttons,
        outputs=[asr_button, llm_button],
        trigger_mode="once",
    ).then(
        fn=transcribe,
        inputs=[audio_file],
        outputs=[transcript_box, raw_transcript]
    ).then(
        enable_buttons,
        outputs=[asr_button, llm_button],
    )

    llm_button.click(
        disable_buttons,
        outputs=[asr_button, llm_button],
        trigger_mode="once",
    ).then(
        fn=postprocess,
        inputs=[raw_transcript, prompt_box],
        outputs=[magic_box, think_box]
    ).then(
        enable_buttons,
        outputs=[asr_button, llm_button],
    )


demo.queue()
demo.launch()