#!/bin/bash # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # GPU family of target platform. Supported values: tegra, non-tegra riva_target_gpu_family="non-tegra" # Name of tegra platform that is being used. Supported tegra platforms: orin, xavier riva_tegra_platform="orin" ####### Enable or Disable Riva Services ####### # For any language other than en-US: service_enabled_nlp must be set to false service_enabled_asr=true service_enabled_nlp=true service_enabled_tts=true service_enabled_nmt=false ####### Configure ASR service ####### # List of supported ASR models and languages for each ASR model # Language code "multi" means a multilingual model, supported languages for various multilingual models are # specified on https://docs.nvidia.com/deeplearning/riva/user-guide/docs/asr/asr-overview.html#multilingual-models # "DO NOT EDIT" this field. Refer to this for valid values to be set in "asr_acoustic_model" and "asr_language_code" fields declare -A asr_models_languages_map asr_models_languages_map["conformer"]="ar-AR en-US en-GB de-DE es-ES es-US fr-FR hi-IN it-IT ja-JP ru-RU ko-KR pt-BR zh-CN nl-NL nl-BE" asr_models_languages_map["conformer_xl"]="en-US" asr_models_languages_map["conformer_unified"]="de-DE ja-JP zh-CN" asr_models_languages_map["conformer_ml_cs"]="es-en-US" asr_models_languages_map["conformer_unified_ml_cs"]="ja-en-JP" asr_models_languages_map["parakeet_0.6b"]="en-US" asr_models_languages_map["parakeet_0.6b_unified"]="en-US zh-CN" asr_models_languages_map["parakeet_0.6b_unified_ml_cs"]="es-en-US" asr_models_languages_map["parakeet_1.1b"]="en-US" asr_models_languages_map["parakeet_1.1b_unified_ml_cs"]="em-ea" asr_models_languages_map["parakeet_1.1b_unified_ml_cs_universal"]="multi" asr_models_languages_map["parakeet_1.1b_unified_ml_cs_concat"]="multi" asr_models_languages_map["parakeet-rnnt_1.1b"]="en-US" asr_models_languages_map["parakeet-rnnt_1.1b_unified_ml_cs_universal"]="multi" asr_models_languages_map["whisper_large"]="multi" asr_models_languages_map["whisper_large_turbo"]="multi" asr_models_languages_map["distil_whisper_large"]="en-US" asr_models_languages_map["kotoba_whisper"]="ja-JP" asr_models_languages_map["canary_1b"]="multi" asr_models_languages_map["canary_0.6b_turbo"]="multi" # Specify ASR acoustic model to deploy, as defined in "asr_models_languages_map" above # Only one ASR acoustic model can be deployed at a time #asr_acoustic_model=("conformer") asr_acoustic_model=("parakeet_1.1b") # Specify ASR language to deploy, as defined in "asr_models_languages_map" above # For multiple languages, enter space separated language codes asr_language_code=("en-US") # Specify ASR accessory model from below list, prebuilt model available only when "asr_acoustic_model" is set to "parakeet_1.1b" # "diarizer" : deploy ASR model with Speaker Diarization model # "silero" : deploy ASR model with Silero Voice Activity Detector (VAD) model # "tele" : deploy ASR model trained with channel robust (telephony) data # Only one ASR accessory model can be deployed at a time asr_accessory_model=("silero") # Set this field as true to deploy ASR with greedy decoder, instead of flashlight decoder use_asr_greedy_decoder=false # Set this as true to deploy streaming ASR in high throughput mode, instead of low latency mode use_asr_streaming_throughput_mode=false # Set this field as true to deploy an offline speaker diarization model deploy_offline_diarizer=false ####### Configure TTS service ####### # List of supported TTS models and languages for each TTS model # Language code "multi" means a multilingual model, supported languages for the multilingual models are # specified on https://docs.nvidia.com/deeplearning/riva/user-guide/docs/tts/tts-overview.html#pretrained-tts-models # "DO NOT EDIT" this field. Refer to this for valid values to be set in "tts_model" and "tts_language_code" fields declare -A tts_models_languages_map tts_models_languages_map["fastpitch_hifigan"]="en-US es-ES es-US it-IT de-DE zh-CN" tts_models_languages_map["magpie"]="multi" tts_models_languages_map["radtts_hifigan"]="en-US" tts_models_languages_map["radttspp_hifigan"]="en-US" tts_models_languages_map["pflow_hifigan"]="en-US" # Specify TTS model to deploy, as defined in "tts_models_languages_map" above # Only one TTS model can be deployed at a time tts_model=("fastpitch_hifigan") # Specify TTS language to deploy, as defined in "tts_models_languages_map" above # For multiple languages, enter space separated language codes tts_language_code=("en-US") ####### Configure translation services ####### # Text-to-Text translation (T2T): # - service_enabled_nmt must be set to true # Speech-to-Text translation (S2T): # - service_enabled_asr, service_enabled_nmt must be set to true # - Set language code of input speech in the asr_language_code field # Speech-to-Speech translation (S2S): # - service_enabled_asr, service_enabled_nmt, service_enabled_tts must be set to true # - Set language code of input speech in the asr_language_code field # - Set language code of output speech in the tts_language_code field # Remote deployment for ASR and TTS for S2T and S2S use cases # - NMT deployment supports using remote ASR and TTS service to allow better control on deployments. # - You need to deploy a separate Riva ASR service and Riva TTS service to use this functionality. # - Set nmt_remote_asr_service to point to your remote endpoint for Riva ASR service # - Set nmt_remote_tts_service to point to your remote endpoint for Riva TTS service # - By default, ASR and TTS service is used from the same local deployment along with NMT. nmt_remote_asr_service=0.0.0.0:50051 nmt_remote_tts_service=0.0.0.0:50051 # Enable Riva Enterprise # If enrolled in Enterprise, enable Riva Enterprise by setting configuration # here. You must explicitly acknowledge you have read and agree to the EULA. # RIVA_API_KEY= # RIVA_API_NGC_ORG= # RIVA_EULA=accept # Specify one or more GPUs to use # specifying more than one GPU is currently an experimental feature, and may result in undefined behaviours. gpus_to_use="device=0" # Specify the encryption key to use to deploy models MODEL_DEPLOY_KEY="tlt_encode" # Locations to use for storing models artifacts # # If an absolute path is specified, the data will be written to that location # Otherwise, a Docker volume will be used (default). # # riva_init.sh will create a `rmir` and `models` directory in the volume or # path specified. # # RMIR ($riva_model_loc/rmir) # Riva uses an intermediate representation (RMIR) for models # that are ready to deploy but not yet fully optimized for deployment. Pretrained # versions can be obtained from NGC (by specifying NGC models below) and will be # downloaded to $riva_model_loc/rmir by `riva_init.sh` # # Custom models produced by NeMo or TLT and prepared using riva-build # may also be copied manually to this location $(riva_model_loc/rmir). # # Models ($riva_model_loc/models) # During the riva_init process, the RMIR files in $riva_model_loc/rmir # are inspected and optimized for deployment. The optimized versions are # stored in $riva_model_loc/models. The riva server exclusively uses these # optimized versions. riva_model_loc="riva-model-repo" if [[ $riva_target_gpu_family == "tegra" ]]; then riva_model_loc="`pwd`/model_repository" fi # The default RMIRs are downloaded from NGC by default in the above $riva_rmir_loc directory # If you'd like to skip the download from NGC and use the existing RMIRs in the $riva_rmir_loc # then set the below $use_existing_rmirs flag to true. You can also deploy your set of custom # RMIRs by keeping them in the riva_rmir_loc dir and use this quickstart script with the # below flag to deploy them all together. use_existing_rmirs=false # Ports to expose for Riva services riva_speech_api_port="50051" riva_speech_api_http_port="50000" # NGC orgs riva_ngc_org="nvidia" riva_ngc_team="riva" riva_ngc_image_version="2.19.0" riva_ngc_model_version="2.19.0" ########## ASR MODELS ########## models_asr=() for lang_code in ${asr_language_code[@]}; do # filter unsupported models on tegra platform if [[ $riva_target_gpu_family == "tegra" ]]; then if [[ ${asr_acoustic_model} == "conformer_xl" || \ ${asr_acoustic_model} == *"parakeet-rnnt"* || \ ${asr_acoustic_model} == *"canary"* || \ ${asr_acoustic_model} == *"whisper"* ]]; then echo "${asr_acoustic_model} model not available for ${riva_target_gpu_family} gpu family" exit 1 fi if [[ ${asr_accessory_model} != "" || ${use_asr_greedy_decoder} == "true" || ${use_asr_streaming_throughput_mode} == "true" ]]; then echo "Prebuilt accessory model, greedy decoder and streaming-throughput mode with ASR are not available for ${riva_target_gpu_family} gpu family" exit 1 fi fi # filter unsupported models and languages supported_languages_list=(${asr_models_languages_map[${asr_acoustic_model}]}) if [[ ${#supported_languages_list[@]} == 0 ]]; then echo "Acoustic model ${asr_acoustic_model} not found. Provide model name as defined in asr_models_languages_map" exit 1 else found=0 for lang in "${supported_languages_list[@]}"; do if [[ ${lang} == ${lang_code} ]]; then found=1 break fi done if [[ $found == 0 ]]; then echo "Acoustic model ${asr_acoustic_model} does not support ${lang_code} language. Provide language as defined in asr_models_languages_map" exit 1 fi fi modified_asr_acoustic_model=${asr_acoustic_model//./-} modified_lang_code="_${lang_code//-/_}" modified_lang_code=${modified_lang_code,,} if [[ ${modified_lang_code} == "_multi" ]]; then modified_lang_code="" fi # check if prebuilt RMIR with accessory model is to be used accessory_model="" if [[ ${asr_accessory_model} != "" ]]; then if [[ ${asr_accessory_model} != "diarizer" && ${asr_accessory_model} != "silero" && ${asr_accessory_model} != "tele" ]]; then echo "Invalid accessory model ${asr_accessory_model}. Only diarizer, silero and tele are supported" exit 1 fi if [[ ${asr_acoustic_model} != "parakeet_1.1b" ]]; then echo "Only parakeet_1.1b + ${asr_accessory_model} is available as prebuilt model. Perform riva-build to create RMIR for other ASR models with ${asr_accessory_model}" exit 1 fi if [[ ${use_asr_greedy_decoder} == "true" ]]; then echo "Greedy decoder is not supported with accessory models. Set use_asr_greedy_decoder to false" exit 1 fi if [[ ${use_asr_streaming_throughput_mode} == "true" && ${asr_accessory_model} == "diarizer" ]]; then echo "Streaming throughput mode is not supported with accessory model ${asr_accessory_model}, Set use_asr_streaming_throughput_mode to false" exit 1 fi accessory_model="_${asr_accessory_model}" fi # check if greedy decoder should be used decoder="" if [[ ${use_asr_greedy_decoder} == "true" || \ ${asr_acoustic_model} == "parakeet_1.1b_unified_ml_cs_universal" || \ ${asr_acoustic_model} == "parakeet_1.1b_unified_ml_cs_concat" || \ ${asr_acoustic_model} == "parakeet-rnnt_1.1b" || \ ${asr_acoustic_model} == "parakeet-rnnt_1.1b_unified_ml_cs_universal" ]]; then decoder="_gre" fi # check if streaming throughput mode is to be used streaming_mode="" if [[ ${use_asr_streaming_throughput_mode} == "true" ]]; then streaming_mode="_thr" fi # populate ngc paths if [[ $riva_target_gpu_family == "tegra" ]]; then models_asr+=( ### Streaming w/ CPU decoder, best latency configuration "${riva_ngc_org}/${riva_ngc_team}/models_asr_${modified_asr_acoustic_model}${modified_lang_code}_str:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}" ) if [[ ${deploy_offline_diarizer} == "true" ]]; then models_asr+=( ### Offline w/ CPU decoder "${riva_ngc_org}/${riva_ngc_team}/rmir_asr_${modified_asr_acoustic_model}${modified_lang_code}_ofl${decoder}:${riva_ngc_model_version}" "${riva_ngc_org}/${riva_ngc_team}/rmir_diarizer_offline:${riva_ngc_model_version}" ) fi else if [[ ${asr_acoustic_model} != *"whisper"* && ${asr_acoustic_model} != "parakeet-rnnt_1.1b" && ${asr_acoustic_model} != *"canary"* ]]; then models_asr+=( ### Streaming w/ CPU decoder, best latency or best throughput configuration "${riva_ngc_org}/${riva_ngc_team}/rmir_asr_${modified_asr_acoustic_model}${modified_lang_code}_str${streaming_mode}${decoder}${accessory_model}:${riva_ngc_model_version}" ) fi ### Offline w/ CPU decoder if [[ ${asr_acoustic_model} == *"whisper"* || ${asr_acoustic_model} == *"canary"* ]]; then models_asr+=( "${riva_ngc_org}/${riva_ngc_team}/rmir_asr_${modified_asr_acoustic_model}_ofl:${riva_ngc_model_version}" ) else if [[ ${asr_accessory_model} == "diarizer" ]]; then models_asr+=( "${riva_ngc_org}/${riva_ngc_team}/rmir_asr_${modified_asr_acoustic_model}${modified_lang_code}_ofl${decoder}:${riva_ngc_model_version}" ) else models_asr+=( "${riva_ngc_org}/${riva_ngc_team}/rmir_asr_${modified_asr_acoustic_model}${modified_lang_code}_ofl${decoder}${accessory_model}:${riva_ngc_model_version}" ) fi if [[ ${deploy_offline_diarizer} == "true" ]]; then models_asr+=( "${riva_ngc_org}/${riva_ngc_team}/rmir_diarizer_offline:${riva_ngc_model_version}" ) fi fi fi ### Punctuation model if [[ ${asr_acoustic_model} != *"unified"* && ${asr_acoustic_model} != *"whisper"* && ${asr_acoustic_model} != *"canary"* ]]; then pnc_lang=$(echo $modified_lang_code | cut -d "_" -f 2) pnc_region=${modified_lang_code##*_} modified_lang_code="_${pnc_lang}_${pnc_region}" if [[ $riva_target_gpu_family == "tegra" ]]; then if [[ "$lang_code" == "en-US" ]]; then models_asr+=( # "${riva_ngc_org}/${riva_ngc_team}/models_nlp_punctuation_bert_large${modified_lang_code}:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}" ) fi models_asr+=( "${riva_ngc_org}/${riva_ngc_team}/models_nlp_punctuation_bert_base${modified_lang_code}:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}" ) else if [[ "$lang_code" == "en-US" ]]; then models_asr+=( # "${riva_ngc_org}/${riva_ngc_team}/rmir_nlp_punctuation_bert_large${modified_lang_code}:${riva_ngc_model_version}" ) fi models_asr+=( "${riva_ngc_org}/${riva_ngc_team}/rmir_nlp_punctuation_bert_base${modified_lang_code}:${riva_ngc_model_version}" ) fi fi done ########## NLP MODELS ########## if [[ $riva_target_gpu_family == "tegra" ]]; then models_nlp=( ### Bert base Punctuation model "${riva_ngc_org}/${riva_ngc_team}/models_nlp_punctuation_bert_base_en_us:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}" # "${riva_ngc_org}/${riva_ngc_team}/models_nlp_punctuation_bert_large_en_us:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}" ) else models_nlp=( ### Bert base Punctuation model "${riva_ngc_org}/${riva_ngc_team}/rmir_nlp_punctuation_bert_base_en_us:${riva_ngc_model_version}" # "${riva_ngc_org}/${riva_ngc_team}/rmir_nlp_punctuation_bert_large_en_us:${riva_ngc_model_version}" ) fi ########## TTS MODELS ########## models_tts=() for lang_code in ${tts_language_code[@]}; do # filter unsupported models on tegra platform if [[ $riva_target_gpu_family == "tegra" ]]; then if [[ ${tts_model} == "magpie" ]]; then echo "${tts_model} model not available for ${riva_target_gpu_family} gpu family" exit 1 fi fi # filter unsupported models and languages supported_languages_list=(${tts_models_languages_map[${tts_model}]}) if [[ ${#supported_languages_list[@]} == 0 ]]; then echo "Model ${tts_model} not found. Provide model name as defined in tts_models_languages_map" exit 1 else found=0 for lang in "${supported_languages_list[@]}"; do if [[ ${lang} == ${lang_code} ]]; then found=1 break fi done if [[ $found == 0 ]]; then echo "Model ${tts_model} does not support ${lang_code} language. Provide language as defined in tts_models_languages_map" exit 1 fi fi modified_lang_code="_${lang_code//-/_}" modified_lang_code=${modified_lang_code,,} if [[ ${modified_lang_code} == "_multi" ]]; then modified_lang_code="_multilingual" fi # populate ngc paths if [[ $riva_target_gpu_family == "tegra" ]]; then if [[ ${lang_code} == "multi" || ${lang_code} == "en-US" || ${lang_code} == "zh-CN" || ${lang_code} == "es-US" ]]; then if [[ ${tts_model} == "pflow_hifigan" ]]; then ### This is a zero shot model for synthesizing speech using audio prompt input, require access to ea-riva-tts NGC org for using it models_tts+=( "gjaugwraudqz/rmir_tts_${tts_model}${modified_lang_code}_ipa:${riva_ngc_model_version}" ) else models_tts+=( "${riva_ngc_org}/${riva_ngc_team}/models_tts_${tts_model}${modified_lang_code}_ipa:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}" ) fi else if [[ ${lang_code} != "de-DE" ]]; then models_tts+=( "${riva_ngc_org}/${riva_ngc_team}/models_tts_${tts_model}${modified_lang_code}_f_ipa:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}" ) fi models_tts+=( "${riva_ngc_org}/${riva_ngc_team}/models_tts_${tts_model}${modified_lang_code}_m_ipa:${riva_ngc_model_version}-${riva_target_gpu_family}-${riva_tegra_platform}" ) fi else if [[ ${lang_code} == "multi" || ${lang_code} == "en-US" || ${lang_code} == "zh-CN" || ${lang_code} == "es-US" ]]; then if [[ ${tts_model} == "pflow_hifigan" ]]; then ### This is a zero shot model for synthesizing speech using audio prompt input, require access to ea-riva-tts NGC org for using it models_tts+=( "gjaugwraudqz/rmir_tts_${tts_model}${modified_lang_code}_ipa:${riva_ngc_model_version}" ) else models_tts+=( "${riva_ngc_org}/${riva_ngc_team}/rmir_tts_${tts_model}${modified_lang_code}_ipa:${riva_ngc_model_version}" ) fi else if [[ ${lang_code} != "de-DE" ]]; then models_tts+=( "${riva_ngc_org}/${riva_ngc_team}/rmir_tts_${tts_model}${modified_lang_code}_f_ipa:${riva_ngc_model_version}" ) fi models_tts+=( "${riva_ngc_org}/${riva_ngc_team}/rmir_tts_${tts_model}${modified_lang_code}_m_ipa:${riva_ngc_model_version}" ) fi fi done ######### NMT models ############### # Models follow Source language _ One or more target languages model architecture # Source or target language "any" means the model supports 32 languages mentioned in docs. # e.g., rmir_megatronnmt_en_any_500m is a English to 32 languages megatron model models_nmt=( ###### Megatron models #"${riva_ngc_org}/${riva_ngc_team}/rmir_megatronnmt_any_en_500m:${riva_ngc_model_version}" #"${riva_ngc_org}/${riva_ngc_team}/rmir_megatronnmt_en_any_500m:${riva_ngc_model_version}" #"${riva_ngc_org}/${riva_ngc_team}/rmir_nmt_megatron_1b_any_en:${riva_ngc_model_version}" #"${riva_ngc_org}/${riva_ngc_team}/rmir_nmt_megatron_1b_en_any:${riva_ngc_model_version}" "${riva_ngc_org}/${riva_ngc_team}/rmir_nmt_megatron_1b_any_any:${riva_ngc_model_version}" ) NGC_TARGET=${riva_ngc_org} if [[ ! -z ${riva_ngc_team} ]]; then NGC_TARGET="${NGC_TARGET}/${riva_ngc_team}" else team="\"\"" fi # Specify paths to SSL Key and Certificate files to use TLS/SSL Credentials for a secured connection. # If either are empty, an insecure connection will be used. # Stored within container at /ssl/servert.crt and /ssl/server.key # Optional, one can also specify a root certificate, stored within container at /ssl/root_server.crt # Set ssl_use_mutual_auth to true for enabling mutual TLS (mTLS) authentication ssl_server_cert="" ssl_server_key="" ssl_root_cert="" ssl_use_mutual_auth=false # define Docker images required to run Riva image_speech_api="nvcr.io/${NGC_TARGET}/riva-speech:${riva_ngc_image_version}" # daemon names riva_daemon_speech="riva-speech" if [[ $riva_target_gpu_family != "tegra" ]]; then riva_daemon_client="riva-client" fi