oceansweep commited on
Commit
73b54e9
·
verified ·
1 Parent(s): b3bc4aa

Delete App_Function_Libraries/Diarization_Lib.py

Browse files
App_Function_Libraries/Diarization_Lib.py DELETED
@@ -1,172 +0,0 @@
1
- # Diarization_Lib.py
2
- #########################################
3
- # Diarization Library
4
- # This library is used to perform diarization of audio files.
5
- # Currently, uses FIXME for transcription.
6
- #
7
- ####################
8
- ####################
9
- # Function List
10
- #
11
- # 1. speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding", embedding_size=512, num_speakers=0)
12
- #
13
- ####################
14
- # Import necessary libraries
15
- import configparser
16
- import json
17
- import logging
18
- import os
19
- from pathlib import Path
20
- import time
21
- # Import Local
22
- from App_Function_Libraries.Audio_Transcription_Lib import speech_to_text
23
- #
24
- # Import 3rd Party
25
- from pyannote.audio import Model
26
- from pyannote.audio.pipelines.speaker_diarization import SpeakerDiarization
27
- import torch
28
- import yaml
29
- #
30
- #######################################################################################################################
31
- # Function Definitions
32
- #
33
-
34
- def load_pipeline_from_pretrained(path_to_config: str | Path) -> SpeakerDiarization:
35
- path_to_config = Path(path_to_config).resolve()
36
- logging.debug(f"Loading pyannote pipeline from {path_to_config}...")
37
-
38
- if not path_to_config.exists():
39
- raise FileNotFoundError(f"Config file not found: {path_to_config}")
40
-
41
- # Load the YAML configuration
42
- with open(path_to_config, 'r') as config_file:
43
- config = yaml.safe_load(config_file)
44
-
45
- # Store current working directory
46
- cwd = Path.cwd().resolve()
47
-
48
- try:
49
- # Create a SpeakerDiarization pipeline
50
- pipeline = SpeakerDiarization()
51
-
52
- # Load models explicitly from local paths
53
- embedding_path = Path(config['pipeline']['params']['embedding']).resolve()
54
- segmentation_path = Path(config['pipeline']['params']['segmentation']).resolve()
55
-
56
- if not embedding_path.exists():
57
- raise FileNotFoundError(f"Embedding model file not found: {embedding_path}")
58
- if not segmentation_path.exists():
59
- raise FileNotFoundError(f"Segmentation model file not found: {segmentation_path}")
60
-
61
- # Load the models from local paths using pyannote's Model class
62
- pipeline.embedding = Model.from_pretrained(str(embedding_path), map_location=torch.device('cpu'))
63
- pipeline.segmentation = Model.from_pretrained(str(segmentation_path), map_location=torch.device('cpu'))
64
-
65
- # Set other parameters
66
- pipeline.clustering = config['pipeline']['params']['clustering']
67
- pipeline.embedding_batch_size = config['pipeline']['params']['embedding_batch_size']
68
- pipeline.embedding_exclude_overlap = config['pipeline']['params']['embedding_exclude_overlap']
69
- pipeline.segmentation_batch_size = config['pipeline']['params']['segmentation_batch_size']
70
-
71
- # Set additional parameters
72
- pipeline.instantiate(config['params'])
73
-
74
- finally:
75
- # Change back to the original working directory
76
- print(f"Changing working directory back to {cwd}")
77
- os.chdir(cwd)
78
-
79
- return pipeline
80
-
81
- def audio_diarization(audio_file_path):
82
- logging.info('audio-diarization: Loading pyannote pipeline')
83
- config = configparser.ConfigParser()
84
- config.read('config.txt')
85
- processing_choice = config.get('Processing', 'processing_choice', fallback='cpu')
86
-
87
- base_dir = Path(__file__).parent.resolve()
88
- config_path = base_dir / 'models' / 'config.yaml'
89
- pipeline = load_pipeline_from_pretrained(config_path)
90
-
91
- time_start = time.time()
92
- if audio_file_path is None:
93
- raise ValueError("audio-diarization: No audio file provided")
94
- logging.info("audio-diarization: Audio file path: %s", audio_file_path)
95
-
96
- try:
97
- _, file_ending = os.path.splitext(audio_file_path)
98
- out_file = audio_file_path.replace(file_ending, ".diarization.json")
99
- prettified_out_file = audio_file_path.replace(file_ending, ".diarization_pretty.json")
100
- if os.path.exists(out_file):
101
- logging.info("audio-diarization: Diarization file already exists: %s", out_file)
102
- with open(out_file) as f:
103
- global diarization_result
104
- diarization_result = json.load(f)
105
- return diarization_result
106
-
107
- logging.info('audio-diarization: Starting diarization...')
108
- diarization_result = pipeline(audio_file_path)
109
-
110
- segments = []
111
- for turn, _, speaker in diarization_result.itertracks(yield_label=True):
112
- chunk = {
113
- "Time_Start": turn.start,
114
- "Time_End": turn.end,
115
- "Speaker": speaker
116
- }
117
- logging.debug("Segment: %s", chunk)
118
- segments.append(chunk)
119
- logging.info("audio-diarization: Diarization completed with pyannote")
120
-
121
- output_data = {'segments': segments}
122
-
123
- logging.info("audio-diarization: Saving prettified JSON to %s", prettified_out_file)
124
- with open(prettified_out_file, 'w') as f:
125
- json.dump(output_data, f, indent=2)
126
-
127
- logging.info("audio-diarization: Saving JSON to %s", out_file)
128
- with open(out_file, 'w') as f:
129
- json.dump(output_data, f)
130
-
131
- except Exception as e:
132
- logging.error("audio-diarization: Error performing diarization: %s", str(e))
133
- raise RuntimeError("audio-diarization: Error performing diarization")
134
- return segments
135
-
136
- def combine_transcription_and_diarization(audio_file_path):
137
- logging.info('combine-transcription-and-diarization: Starting transcription and diarization...')
138
-
139
- transcription_result = speech_to_text(audio_file_path)
140
-
141
- diarization_result = audio_diarization(audio_file_path)
142
-
143
- combined_result = []
144
- for transcription_segment in transcription_result:
145
- for diarization_segment in diarization_result:
146
- if transcription_segment['Time_Start'] >= diarization_segment['Time_Start'] and transcription_segment[
147
- 'Time_End'] <= diarization_segment['Time_End']:
148
- combined_segment = {
149
- "Time_Start": transcription_segment['Time_Start'],
150
- "Time_End": transcription_segment['Time_End'],
151
- "Speaker": diarization_segment['Speaker'],
152
- "Text": transcription_segment['Text']
153
- }
154
- combined_result.append(combined_segment)
155
- break
156
-
157
- _, file_ending = os.path.splitext(audio_file_path)
158
- out_file = audio_file_path.replace(file_ending, ".combined.json")
159
- prettified_out_file = audio_file_path.replace(file_ending, ".combined_pretty.json")
160
-
161
- logging.info("combine-transcription-and-diarization: Saving prettified JSON to %s", prettified_out_file)
162
- with open(prettified_out_file, 'w') as f:
163
- json.dump(combined_result, f, indent=2)
164
-
165
- logging.info("combine-transcription-and-diarization: Saving JSON to %s", out_file)
166
- with open(out_file, 'w') as f:
167
- json.dump(combined_result, f)
168
-
169
- return combined_result
170
- #
171
- #
172
- #######################################################################################################################