import requests, os, re, warnings, fitz warnings.filterwarnings("ignore") from dotenv import load_dotenv from datasets import load_dataset from fastapi import FastAPI, HTTPException from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel load_dotenv() app = FastAPI(title="ETSI Specification Splitter API", description="API to split and display specifications by their chapters & sub-chapters", docs_url="/") origins = [ "*", ] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) spec_contents = load_dataset("OrganizedProgrammers/ETSISpecContent", token=os.environ["HF_TOKEN"]) spec_contents = spec_contents["train"].to_list() def is_doc_indexed(spec_id: str): return any([True if spec_id == s["doc_id"] else False for s in spec_contents]) def get_full_doc(spec_id: str): doc = [] for spec in spec_contents: if spec["doc_id"] == spec_id: doc.append(f"{spec['section']}\n{spec['content']}") return "\n\n".join(doc) def get_structured_doc(spec_id: str): doc = {} for spec in spec_contents: if spec["doc_id"] == spec_id: doc[spec["section"]] = spec["content"] return doc class SpecRequest(BaseModel): spec_id: str def get_pdf_data(request: SpecRequest): specification = request.spec_id if is_doc_indexed(specification): return get_full_doc(specification) url = requests.post( "https://organizedprogrammers-etsidocfinder.hf.space/find", verify=False, headers={"Content-Type": "application/json"}, json={"doc_id": specification} ) if url.status_code != 200: raise HTTPException(404, detail="Not found") url = url.json()['url'] response = requests.get( url, verify=False, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/138.0.0.0 Safari/537.36"} ) pdf = fitz.open(stream=response.content, filetype="pdf") return pdf, pdf.get_toc() @app.post("/get_spec_content") def get_spec_content(request: SpecRequest): def extract_sections(text, titles): sections = {} # On trie les titres selon leur position dans le texte sorted_titles = sorted(titles, key=lambda t: text.find(t)) for i, title in enumerate(sorted_titles): start = text.find(title) if i + 1 < len(sorted_titles): end = text.find(sorted_titles[i + 1]) sections[re.sub(r"\s+", " ", title)] = re.sub(r"\s+", " ", text[start:end].replace(title, "").strip().rstrip()) else: sections[re.sub(r"\s+", " ", title)] = re.sub(r"\s+", " ", text[start:].replace(title, "").strip().rstrip()) return sections print("\n[INFO] Tentative de récupération du texte", flush=True) pdf, doc_toc = get_pdf_data(request) text = [] first = 0 for level, title, page in doc_toc: if title[0].isnumeric(): first = page - 1 break for page in pdf[first:]: text.append("\n".join([line.strip() for line in page.get_text().splitlines()])) text = "\n".join(text) if not text or not doc_toc: print("\n[ERREUR] Pas de texte/table of contents trouvé !") return {} print(f"\n[INFO] Texte {request.spec_id} récupéré", flush=True) titles = [] for level, title, page in doc_toc: if title[0].isnumeric() and '\n'.join(title.strip().split(" ", 1)) in text: titles.append('\n'.join(title.strip().split(" ", 1))) return extract_sections(text, titles)