File size: 11,866 Bytes
65a3718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.svm import SVC, SVR
from sklearn.naive_bayes import GaussianNB, MultinomialNB
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
from sklearn.neural_network import MLPClassifier, MLPRegressor
from sklearn.metrics import (
    accuracy_score, 
    mean_squared_error, 
    mean_absolute_error, 
    r2_score, 
    classification_report
)

class MachineLearningApp:
    def __init__(self):

        st.set_page_config(
            page_title="ML Model Selection App", 
            page_icon=":robot_face:", 
            layout="wide"
        )
        

        self.initialize_session_state()

    def initialize_session_state(self):
        """Initialize all session state variables"""
        initial_states = {
            'data': None,
            'X': None,
            'y': None,
            'model': None,
            'scaler': None,
            'label_encoder': None,
            'problem_type': None,
            'test_size': 0.2,
            'selected_features': [],
            'target_column': None,
            'selected_model': None,
            'model_results': None
        }
        
        for key, value in initial_states.items():
            if key not in st.session_state:
                st.session_state[key] = value

    def sidebar_data_upload(self):
        """Sidebar for data upload"""
        with st.sidebar:
            st.header("๐Ÿ“Š Data Upload")
            uploaded_file = st.file_uploader(
                "Choose a CSV or Excel file", 
                type=['csv', 'xlsx', 'xls']
            )
            
            return uploaded_file

    def sidebar_feature_selection(self, df):
        """Sidebar for feature and target selection"""
        with st.sidebar:
            st.header("๐Ÿ” Feature Selection")
            
            if df is None:
                st.warning("Please upload a dataset first.")
                return None, None, None
            

            numeric_cols = df.select_dtypes(include=['int64', 'float64']).columns.tolist()
            categorical_cols = df.select_dtypes(include=['object']).columns.tolist()
            

            selected_features = st.multiselect(
                "Select Features", 
                options=list(df.columns),
                default=numeric_cols
            )
            

            target_column = st.selectbox(
                "Select Target Column", 
                options=list(df.columns)
            )
            

            test_size = st.slider(
                "Test Set Percentage", 
                min_value=0.1, 
                max_value=0.5, 
                value=0.2, 
                step=0.05,
                help="Percentage of data to use for testing"
            )
            
            return selected_features, target_column, test_size

    def sidebar_model_selection(self, problem_type):
        """Sidebar for model selection"""
        with st.sidebar:
            st.header("๐Ÿค– Model Selection")
            
            if problem_type == 'classification':
                models = {
                    'Logistic Regression': LogisticRegression(),
                    'Decision Tree': DecisionTreeClassifier(),
                    'Random Forest': RandomForestClassifier(),
                    'SVM': SVC(),
                    'Naive Bayes (Gaussian)': GaussianNB(),
                    'Naive Bayes (Multinomial)': MultinomialNB(),
                    'K-Nearest Neighbors': KNeighborsClassifier(),
                    'Neural Network': MLPClassifier(max_iter=1000)
                }
            else:
                models = {
                    'Linear Regression': LinearRegression(),
                    'Decision Tree': DecisionTreeRegressor(),
                    'Random Forest': RandomForestRegressor(),
                    'SVR': SVR(),
                    'K-Nearest Neighbors': KNeighborsRegressor(),
                    'Neural Network': MLPRegressor(max_iter=1000)
                }
            
            selected_model = st.selectbox(
                "Choose a Model", 
                options=list(models.keys())
            )
            
            return models, selected_model

    def sidebar_prediction_input(self, selected_features):
        """Sidebar for prediction input"""
        with st.sidebar:
            st.header("๐Ÿ”ฎ Prediction Input")
            
            if st.session_state.model is None:
                st.warning("Please train a model first.")
                return None
            

            prediction_inputs = {}
            for feature in selected_features:
                prediction_inputs[feature] = st.number_input(
                    f"Enter {feature}", 
                    value=0.0,
                    step=0.1
                )
            

            if st.button("Predict"):
                return prediction_inputs
            
            return None

    def load_and_display_data(self, uploaded_file):
        """Load data and display dataset information"""
        if uploaded_file is not None:
            try:

                if uploaded_file.name.endswith('.csv'):
                    df = pd.read_csv(uploaded_file)
                else:
                    df = pd.read_excel(uploaded_file)
                

                st.session_state.data = df
                

                col1, col2 = st.columns(2)
                
                with col1:
                    st.subheader("๐Ÿ“‹ Dataset Preview")
                    st.dataframe(df.head())
                
                with col2:
                    st.subheader("๐Ÿ“Š Dataset Information")
                    st.write(f"Total Rows: {df.shape[0]}")
                    st.write(f"Total Columns: {df.shape[1]}")
                    

                    col_types = df.dtypes.value_counts()
                    st.write("Column Types:")
                    for dtype, count in col_types.items():
                        st.text(f"{dtype}: {count} columns")
                
                return df
            
            except Exception as e:
                st.error(f"Error loading file: {e}")
                return None

    def train_and_evaluate_model(self, X, y, test_size, models, selected_model_name):
        """Train and evaluate the selected model"""

        results_container = st.container()
        
        with results_container:

            X_scaled = StandardScaler().fit_transform(X)
            

            problem_type = 'classification' if y.dtype == 'object' else 'regression'
            

            label_encoder = None
            if problem_type == 'classification':
                label_encoder = LabelEncoder()
                y_encoded = label_encoder.fit_transform(y)
            else:
                y_encoded = y
            

            X_train, X_test, y_train, y_test = train_test_split(
                X_scaled, y_encoded, test_size=test_size, random_state=42
            )
            

            model = models[selected_model_name]
            

            model.fit(X_train, y_train)
            

            y_pred = model.predict(X_test)
            

            st.header("๐Ÿ”ฌ Model Training Results")
            col1, col2 = st.columns(2)
            

            with col1:
                st.subheader("๐Ÿ“Š Model Performance")
                if problem_type == 'classification':
                    accuracy = accuracy_score(y_test, y_pred)
                    st.metric("Accuracy", f"{accuracy:.2%}")
                    
                    st.subheader("Classification Report")
                    report = classification_report(
                        y_test, y_pred, 
                        target_names=label_encoder.classes_ if label_encoder else None,
                        output_dict=True
                    )
                    

                    for key, value in report.items():
                        if isinstance(value, dict):
                            st.text(f"{key}:")
                            for metric, score in value.items():
                                st.text(f"  {metric}: {score:.2f}")
                
                else:

                    mse = mean_squared_error(y_test, y_pred)
                    mae = mean_absolute_error(y_test, y_pred)
                    r2 = r2_score(y_test, y_pred)
                    
                    st.metric("Mean Squared Error", f"{mse:.4f}")
                    st.metric("Mean Absolute Error", f"{mae:.4f}")
                    st.metric("Rยฒ Score", f"{r2:.4f}")
            
            with col2:
                st.subheader("๐Ÿ“ˆ Model Details")
                st.write(f"Selected Model: {selected_model_name}")
                st.write(f"Problem Type: {problem_type}")
                st.write(f"Test Set Size: {test_size:.0%}")
                st.write(f"Features Used: {', '.join(X.columns)}")
                st.write(f"Target Column: {y.name}")
            

            st.session_state.model = model
            st.session_state.scaler = StandardScaler().fit(X)
            st.session_state.label_encoder = label_encoder
            st.session_state.problem_type = problem_type
            st.session_state.X = X

    def make_prediction(self, prediction_inputs):
        """Make prediction on unseen data"""
        if st.session_state.model is None:
            st.error("Please train a model first.")
            return
        

        input_df = pd.DataFrame([prediction_inputs])
        

        input_scaled = st.session_state.scaler.transform(input_df)
        

        prediction = st.session_state.model.predict(input_scaled)
        

        if st.session_state.label_encoder:
            prediction = st.session_state.label_encoder.inverse_transform(prediction)
        

        st.header("๐ŸŽฏ Prediction Result")
        st.subheader("Input Data")
        st.dataframe(input_df)
        
        st.subheader("Predicted Value")
        st.write(prediction[0])

    def run(self):
        """Main application flow"""

        uploaded_file = self.sidebar_data_upload()
        

        st.title("๐Ÿš€ Predict on Custom Data using any ML Model")
        

        df = self.load_and_display_data(uploaded_file)
        
        if df is not None:

            selected_features, target_column, test_size = self.sidebar_feature_selection(df)
            
            if selected_features and target_column:

                X = df[selected_features]
                y = df[target_column]
                

                problem_type = 'classification' if y.dtype == 'object' else 'regression'
                

                models, selected_model = self.sidebar_model_selection(problem_type)
                

                with st.sidebar:
                    if st.button("Train Model", type="primary"):

                        for key in ['model', 'scaler', 'label_encoder', 'problem_type']:
                            st.session_state[key] = None
                        

                        self.train_and_evaluate_model(
                            X, y, test_size, models, selected_model
                        )
                

                prediction_inputs = self.sidebar_prediction_input(selected_features)
                

                if prediction_inputs:
                    self.make_prediction(prediction_inputs)


if __name__ == "__main__":
    app = MachineLearningApp()
    app.run()