|
import torch |
|
from PIL import Image |
|
import gradio as gr |
|
from transformers import AutoImageProcessor, AutoModelForImageClassification |
|
|
|
model_id = "prithivMLmods/Food-101-93M" |
|
processor = AutoImageProcessor.from_pretrained(model_id) |
|
model = AutoModelForImageClassification.from_pretrained(model_id) |
|
|
|
def predict_food(image: Image.Image): |
|
inputs = processor(images=image, return_tensors="pt") |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0] |
|
topk = torch.topk(probs, k=5) |
|
labels = [model.config.id2label[i.item()] for i in topk.indices] |
|
scores = [round((p * 100).item(), 2) for p in topk.values] |
|
return "\n".join(f"{lbl}: {sc}%" for lbl, sc in zip(labels, scores)) |
|
|
|
gr.Interface( |
|
fn=predict_food, |
|
inputs=gr.Image(type="pil"), |
|
outputs="text", |
|
title="🍽️ Food‑101 Food Classifier", |
|
description="Upload food image, outputs the top 5 dish categories." |
|
).launch() |