Spaces:
Starting
Starting
Rewrite app.py and search.py with multi-hop LLM refinement
Browse files- app.py +310 -251
- requirements.txt +6 -1
- result.txt +0 -0
- state.py +29 -4
- test.py +7 -0
- tools/search.py +99 -41
app.py
CHANGED
@@ -14,6 +14,7 @@ from sentence_transformers import SentenceTransformer
|
|
14 |
import gradio as gr
|
15 |
from dotenv import load_dotenv
|
16 |
from huggingface_hub import InferenceClient
|
|
|
17 |
from state import JARVISState
|
18 |
from tools import (
|
19 |
search_tool, multi_hop_search_tool, file_parser_tool, image_parser_tool,
|
@@ -33,27 +34,68 @@ load_dotenv()
|
|
33 |
SPACE_ID = os.getenv("SPACE_ID", "onisj/jarvis_gaia_agent")
|
34 |
GAIA_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
35 |
GAIA_FILE_URL = f"{GAIA_API_URL}/files/"
|
36 |
-
|
|
|
37 |
|
38 |
# Verify environment variables
|
39 |
if not SPACE_ID:
|
40 |
raise ValueError("SPACE_ID not set")
|
41 |
-
if not
|
42 |
raise ValueError("HUGGINGFACEHUB_API_TOKEN not set")
|
|
|
|
|
43 |
logger.info(f"SPACE_ID: {SPACE_ID}")
|
44 |
|
45 |
-
#
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
|
|
57 |
try:
|
58 |
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
59 |
logger.info("Sentence transformer initialized")
|
@@ -61,40 +103,41 @@ except Exception as e:
|
|
61 |
logger.error(f"Failed to initialize embedder: {e}")
|
62 |
embedder = None
|
63 |
|
64 |
-
#
|
65 |
-
async def
|
66 |
-
"""Test if a file exists for the task ID."""
|
67 |
try:
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
return False, None
|
79 |
except Exception as e:
|
80 |
-
logger.warning(f"
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
86 |
try:
|
87 |
question = state["question"]
|
88 |
task_id = state["task_id"]
|
89 |
tools_needed = ["search_tool"]
|
90 |
|
91 |
-
if
|
92 |
prompt = ChatPromptTemplate.from_messages([
|
93 |
SystemMessage(content="""Select tools from: ['search_tool', 'multi_hop_search_tool', 'file_parser_tool', 'image_parser_tool', 'calculator_tool', 'document_retriever_tool', 'duckduckgo_search_tool', 'weather_info_tool', 'hub_stats_tool', 'guest_info_retriever_tool'].
|
94 |
Return JSON list, e.g., ["search_tool", "file_parser_tool"].
|
95 |
Rules:
|
96 |
- Always include "search_tool" unless purely computational.
|
97 |
-
- Use "multi_hop_search_tool" for complex queries (over 20 words).
|
98 |
- Use "file_parser_tool" for data, tables, or Excel.
|
99 |
- Use "image_parser_tool" for images/videos.
|
100 |
- Use "calculator_tool" for math calculations.
|
@@ -107,15 +150,27 @@ async def parse_question(state: Dict[str, Any]) -> Dict[str, Any]:
|
|
107 |
HumanMessage(content=f"Query: {question}")
|
108 |
])
|
109 |
try:
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
{"role": "user", "content": prompt[1].content}
|
114 |
-
|
115 |
-
|
116 |
-
temperature=0.7
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
valid_tools = {
|
120 |
"search_tool", "multi_hop_search_tool", "file_parser_tool", "image_parser_tool",
|
121 |
"calculator_tool", "document_retriever_tool", "duckduckgo_search_tool",
|
@@ -123,165 +178,192 @@ async def parse_question(state: Dict[str, Any]) -> Dict[str, Any]:
|
|
123 |
}
|
124 |
tools_needed = [tool for tool in tools_needed if tool in valid_tools]
|
125 |
except Exception as e:
|
126 |
-
logger.warning(f"Task {task_id}
|
127 |
-
|
128 |
|
129 |
# Keyword-based fallback
|
130 |
question_lower = question.lower()
|
131 |
-
if any(word in question_lower for word in ["image", "video"]):
|
132 |
tools_needed.append("image_parser_tool")
|
133 |
-
if any(word in question_lower for word in ["data", "table", "excel"]):
|
134 |
tools_needed.append("file_parser_tool")
|
135 |
-
if any(word in question_lower for word in ["calculate", "math"]):
|
136 |
tools_needed.append("calculator_tool")
|
137 |
-
if any(word in question_lower for word in ["document", "pdf"]):
|
138 |
tools_needed.append("document_retriever_tool")
|
139 |
-
if any(word in question_lower for word in ["weather"]):
|
140 |
tools_needed.append("weather_info_tool")
|
141 |
-
if any(word in question_lower for word in ["model", "huggingface"]):
|
142 |
tools_needed.append("hub_stats_tool")
|
143 |
-
if any(word in question_lower for word in ["guest", "name", "relation"]):
|
144 |
tools_needed.append("guest_info_retriever_tool")
|
145 |
-
if len(question.split()) > 20:
|
146 |
tools_needed.append("multi_hop_search_tool")
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
160 |
logger.info(f"Task {task_id}: Selected tools: {tools_needed}")
|
161 |
return state
|
162 |
except Exception as e:
|
163 |
logger.error(f"Error parsing task {task_id}: {e}")
|
|
|
164 |
state["tools_needed"] = ["search_tool"]
|
165 |
return state
|
166 |
|
|
|
167 |
async def tool_dispatcher(state: JARVISState) -> JARVISState:
|
168 |
-
"""Dispatch selected tools to process the state."""
|
169 |
try:
|
170 |
updated_state = state.copy()
|
171 |
file_type = "jpg" if "image" in state["question"].lower() else "txt"
|
172 |
-
if
|
173 |
file_type = "pdf"
|
174 |
elif "data" in state["question"].lower():
|
175 |
file_type = "xlsx"
|
176 |
|
177 |
-
can_download, file_ext = await test_gaia_api(updated_state["task_id"], file_type)
|
178 |
-
|
179 |
for tool in updated_state["tools_needed"]:
|
180 |
try:
|
181 |
if tool == "search_tool":
|
182 |
-
result =
|
183 |
-
updated_state["web_results"].extend([r
|
184 |
elif tool == "multi_hop_search_tool":
|
185 |
-
result = await multi_hop_search_tool.ainvoke({"query": updated_state["question"], "steps": 3})
|
186 |
-
updated_state["
|
187 |
-
await asyncio.sleep(2)
|
188 |
-
elif tool == "file_parser_tool"
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
updated_state["
|
|
|
|
|
|
|
197 |
elif tool == "calculator_tool":
|
198 |
-
result =
|
199 |
updated_state["calculation_results"] = str(result)
|
200 |
-
elif tool == "document_retriever_tool"
|
201 |
-
|
202 |
-
|
203 |
-
"query": updated_state["question"],
|
204 |
-
"
|
205 |
-
})
|
206 |
-
updated_state["document_results"] = str(result)
|
207 |
elif tool == "duckduckgo_search_tool":
|
208 |
-
result =
|
209 |
updated_state["web_results"].append(str(result))
|
210 |
elif tool == "weather_info_tool":
|
211 |
location = updated_state["question"].split("weather in ")[1].split()[0] if "weather in" in updated_state["question"].lower() else "Unknown"
|
212 |
-
result =
|
213 |
updated_state["web_results"].append(str(result))
|
214 |
elif tool == "hub_stats_tool":
|
215 |
author = updated_state["question"].split("by ")[1].split()[0] if "by" in updated_state["question"].lower() else "Unknown"
|
216 |
-
result =
|
217 |
updated_state["web_results"].append(str(result))
|
218 |
elif tool == "guest_info_retriever_tool":
|
219 |
query = updated_state["question"].split("about ")[1] if "about" in updated_state["question"].lower() else updated_state["question"]
|
220 |
-
result =
|
221 |
updated_state["web_results"].append(str(result))
|
|
|
222 |
except Exception as e:
|
223 |
logger.warning(f"Error in tool {tool} for task {updated_state['task_id']}: {str(e)}")
|
224 |
-
updated_state[
|
|
|
225 |
|
226 |
logger.info(f"Task {updated_state['task_id']}: Tool results: {updated_state}")
|
227 |
return updated_state
|
228 |
except Exception as e:
|
229 |
logger.error(f"Tool dispatch failed for task {state['task_id']}: {e}")
|
230 |
-
|
|
|
231 |
|
|
|
232 |
async def reasoning(state: JARVISState) -> Dict[str, Any]:
|
233 |
-
"""Generate exact-match answer with specific formatting."""
|
234 |
try:
|
235 |
-
if not llm:
|
236 |
-
return {"answer": "LLM unavailable"}
|
237 |
prompt = ChatPromptTemplate.from_messages([
|
238 |
SystemMessage(content="""Provide ONLY the exact answer (e.g., '90', 'HUE'). For USD, use two decimal places (e.g., '1234.00'). For lists, use comma-separated values (e.g., 'Smith, Lee'). For IOC codes, use three-letter codes (e.g., 'ARG'). No explanations or conversational text."""),
|
239 |
-
HumanMessage(content="""
|
|
|
240 |
Web results: {web_results}
|
|
|
241 |
File results: {file_results}
|
242 |
Image results: {image_results}
|
243 |
Calculation results: {calculation_results}
|
244 |
Document results: {document_results}""")
|
245 |
])
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
)
|
261 |
-
answer = response["choices"][0]["message"]["content"].strip()
|
262 |
-
# Clean answer for specific formats
|
263 |
-
if "USD" in state["question"].lower():
|
264 |
try:
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
except Exception as e:
|
275 |
logger.error(f"Reasoning failed for task {state['task_id']}: {e}")
|
|
|
276 |
return {"answer": f"Error: {str(e)}"}
|
277 |
|
|
|
278 |
def router(state: JARVISState) -> str:
|
279 |
-
"""Route based on tools needed."""
|
280 |
if state["tools_needed"]:
|
281 |
return "tool_dispatcher"
|
282 |
return "reasoning"
|
283 |
|
284 |
-
#
|
285 |
workflow = StateGraph(JARVISState)
|
286 |
workflow.add_node("parse", parse_question)
|
287 |
workflow.add_node("tool_dispatcher", tool_dispatcher)
|
@@ -299,33 +381,29 @@ workflow.add_edge("tool_dispatcher", "reasoning")
|
|
299 |
workflow.add_edge("reasoning", END)
|
300 |
graph = workflow.compile()
|
301 |
|
302 |
-
#
|
303 |
-
class
|
304 |
def __init__(self):
|
305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
async def process_question(self, task_id: str, question: str) -> str:
|
308 |
-
"""Process a single question with file handling."""
|
309 |
-
file_type = "jpg" if "image" in question.lower() else "txt"
|
310 |
-
if "menu" in question.lower() or "report" in question.lower():
|
311 |
-
file_type = "pdf"
|
312 |
-
elif "data" in question.lower():
|
313 |
-
file_type = "xlsx"
|
314 |
-
|
315 |
-
file_path = f"temp_{task_id}.{file_type}"
|
316 |
-
file_available, file_ext = await test_gaia_api(task_id, file_type)
|
317 |
-
if file_available:
|
318 |
-
try:
|
319 |
-
async with aiohttp.ClientSession() as session:
|
320 |
-
async with session.get(f"{GAIA_FILE_URL}{task_id}.{file_ext}") as resp:
|
321 |
-
if resp.status == 200:
|
322 |
-
with open(file_path, "wb") as f:
|
323 |
-
f.write(await resp.read())
|
324 |
-
else:
|
325 |
-
logger.warning(f"Failed to fetch file for {task_id}: HTTP {resp.status}")
|
326 |
-
except Exception as e:
|
327 |
-
logger.error(f"Error downloading file for task {task_id}: {str(e)}")
|
328 |
-
|
329 |
state = JARVISState(
|
330 |
task_id=task_id,
|
331 |
question=question,
|
@@ -335,116 +413,98 @@ class BasicAgent:
|
|
335 |
image_results="",
|
336 |
calculation_results="",
|
337 |
document_results="",
|
|
|
338 |
messages=[HumanMessage(content=question)],
|
339 |
-
answer=""
|
|
|
|
|
|
|
|
|
340 |
)
|
341 |
try:
|
342 |
result = await graph.ainvoke(state)
|
343 |
answer = result["answer"] or "Unknown"
|
344 |
-
logger.info(f"Task {task_id}: Final answer
|
|
|
|
|
345 |
return answer
|
346 |
except Exception as e:
|
347 |
logger.error(f"Error processing task {task_id}: {e}")
|
|
|
|
|
348 |
return f"Error: {str(e)}"
|
349 |
finally:
|
350 |
for ext in ["txt", "csv", "xlsx", "jpg", "pdf"]:
|
351 |
-
file_path = f"
|
352 |
if os.path.exists(file_path):
|
353 |
try:
|
354 |
os.remove(file_path)
|
|
|
355 |
except Exception as e:
|
356 |
logger.error(f"Error removing file {file_path}: {e}")
|
357 |
|
358 |
-
async def
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
if task_id is None:
|
364 |
-
task_id = "unknown_task_id"
|
365 |
-
try:
|
366 |
-
loop = asyncio.get_event_loop()
|
367 |
-
except RuntimeError:
|
368 |
-
loop = asyncio.new_event_loop()
|
369 |
-
asyncio.set_event_loop(loop)
|
370 |
-
return loop.run_until_complete(self.async_call(question, task_id))
|
371 |
-
|
372 |
-
# --- Evaluation and Submission ---
|
373 |
-
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
374 |
-
"""Run evaluation and submit answers to GAIA API."""
|
375 |
-
if not profile:
|
376 |
-
logger.error("User not logged in.")
|
377 |
-
return "Please Login to Hugging Face.", None
|
378 |
-
username = f"{profile.username}"
|
379 |
-
logger.info(f"User logged in: {username}")
|
380 |
-
|
381 |
-
questions_url = f"{GAIA_API_URL}/questions"
|
382 |
-
submit_url = f"{GAIA_API_URL}/submit"
|
383 |
-
agent_code = f"https://huggingface.co/spaces/{SPACE_ID}/tree/main"
|
384 |
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
|
391 |
-
logger.info(f"Fetching questions from: {questions_url}")
|
392 |
-
try:
|
393 |
-
response = requests.get(questions_url, timeout=15)
|
394 |
-
response.raise_for_status()
|
395 |
-
questions_data = response.json()
|
396 |
-
if not questions_data:
|
397 |
-
logger.error("Empty questions list.")
|
398 |
-
return "No questions fetched.", None
|
399 |
-
logger.info(f"Fetched {len(questions_data)} questions.")
|
400 |
-
except Exception as e:
|
401 |
-
logger.error(f"Error fetching questions: {e}")
|
402 |
-
return f"Error fetching questions: {e}", None
|
403 |
-
|
404 |
-
results_log = []
|
405 |
-
answers_payload = []
|
406 |
-
logger.info(f"Processing {len(questions_data)} questions...")
|
407 |
-
for item in questions_data:
|
408 |
-
task_id = item.get("task_id")
|
409 |
-
question_text = item.get("question")
|
410 |
-
if not task_id or question_text is None:
|
411 |
-
logger.warning(f"Skipping invalid item: {item}")
|
412 |
-
continue
|
413 |
try:
|
414 |
-
|
415 |
-
|
416 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
417 |
except Exception as e:
|
418 |
-
logger.error(f"
|
419 |
-
|
|
|
420 |
|
421 |
-
|
422 |
-
logger.error("No answers generated.")
|
423 |
-
return "No answers to submit.", pd.DataFrame(results_log)
|
424 |
|
425 |
-
|
426 |
-
logger.info(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
427 |
-
try:
|
428 |
-
response = requests.post(submit_url, json=submission_data, timeout=120)
|
429 |
-
response.raise_for_status()
|
430 |
-
result_data = response.json()
|
431 |
-
final_status = (
|
432 |
-
f"Submission Successful!\n"
|
433 |
-
f"User: {result_data.get('username')}\n"
|
434 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
435 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
436 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
437 |
-
)
|
438 |
-
results_df = pd.DataFrame(results_log)
|
439 |
-
return final_status, results_df
|
440 |
-
except Exception as e:
|
441 |
-
logger.error(f"Submission failed: {e}")
|
442 |
-
results_df = pd.DataFrame(results_log)
|
443 |
-
return f"Submission Failed: {e}", results_df
|
444 |
-
|
445 |
-
# --- Gradio Interface ---
|
446 |
with gr.Blocks() as demo:
|
447 |
-
gr.Markdown("# Evolved JARVIS Agent
|
448 |
gr.Markdown(
|
449 |
"""
|
450 |
**Instructions:**
|
@@ -454,23 +514,22 @@ with gr.Blocks() as demo:
|
|
454 |
|
455 |
---
|
456 |
**Disclaimers:**
|
457 |
-
Uses Hugging Face Inference, SERPAPI, and OpenWeatherMap for GAIA benchmark.
|
458 |
"""
|
459 |
)
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
464 |
-
|
465 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
466 |
-
results_table = gr.DataFrame(label="Questions and Answers", wrap=True)
|
467 |
|
|
|
468 |
run_button.click(
|
469 |
-
fn=
|
470 |
-
outputs=[
|
471 |
)
|
472 |
|
473 |
-
# --- Main ---
|
474 |
if __name__ == "__main__":
|
475 |
logger.info("\n" + "-"*30 + " App Starting " + "-"*30)
|
476 |
logger.info(f"SPACE_ID: {SPACE_ID}")
|
|
|
14 |
import gradio as gr
|
15 |
from dotenv import load_dotenv
|
16 |
from huggingface_hub import InferenceClient
|
17 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
18 |
from state import JARVISState
|
19 |
from tools import (
|
20 |
search_tool, multi_hop_search_tool, file_parser_tool, image_parser_tool,
|
|
|
34 |
SPACE_ID = os.getenv("SPACE_ID", "onisj/jarvis_gaia_agent")
|
35 |
GAIA_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
36 |
GAIA_FILE_URL = f"{GAIA_API_URL}/files/"
|
37 |
+
TOGETHER_API_KEY = os.getenv("TOGETHER_API_KEY")
|
38 |
+
HF_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
39 |
|
40 |
# Verify environment variables
|
41 |
if not SPACE_ID:
|
42 |
raise ValueError("SPACE_ID not set")
|
43 |
+
if not HF_API_TOKEN:
|
44 |
raise ValueError("HUGGINGFACEHUB_API_TOKEN not set")
|
45 |
+
if not TOGETHER_API_KEY:
|
46 |
+
raise ValueError("TOGETHER_API_KEY not set")
|
47 |
logger.info(f"SPACE_ID: {SPACE_ID}")
|
48 |
|
49 |
+
# Model configuration
|
50 |
+
TOGETHER_MODELS = [
|
51 |
+
"meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
|
52 |
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B-free",
|
53 |
+
]
|
54 |
+
HF_MODEL = "meta-llama/Llama-3.2-1B-Instruct"
|
55 |
+
|
56 |
+
# Initialize LLM clients
|
57 |
+
def initialize_llm():
|
58 |
+
for model in TOGETHER_MODELS:
|
59 |
+
try:
|
60 |
+
client = InferenceClient(
|
61 |
+
model=model,
|
62 |
+
api_key=TOGETHER_API_KEY,
|
63 |
+
base_url="https://api.together.ai/v1",
|
64 |
+
timeout=30
|
65 |
+
)
|
66 |
+
client.chat.completions.create(
|
67 |
+
model=model,
|
68 |
+
messages=[{"role": "user", "content": "Test"}],
|
69 |
+
max_tokens=10,
|
70 |
+
)
|
71 |
+
logger.info(f"Initialized Together AI model: {model}")
|
72 |
+
return client, "together"
|
73 |
+
except Exception as e:
|
74 |
+
logger.warning(f"Failed to initialize {model}: {e}")
|
75 |
+
|
76 |
+
try:
|
77 |
+
client = InferenceClient(
|
78 |
+
model=HF_MODEL,
|
79 |
+
token=HF_API_TOKEN,
|
80 |
+
timeout=30
|
81 |
+
)
|
82 |
+
logger.info(f"Initialized Hugging Face Inference API model: {HF_MODEL}")
|
83 |
+
return client, "hf_api"
|
84 |
+
except Exception as e:
|
85 |
+
logger.warning(f"Failed to initialize HF Inference API: {e}")
|
86 |
+
|
87 |
+
try:
|
88 |
+
tokenizer = AutoTokenizer.from_pretrained(HF_MODEL, token=HF_API_TOKEN)
|
89 |
+
model = AutoModelForCausalLM.from_pretrained(HF_MODEL, token=HF_API_TOKEN, device_map="mps")
|
90 |
+
logger.info(f"Initialized local Hugging Face model: {HF_MODEL}")
|
91 |
+
return (model, tokenizer), "hf_local"
|
92 |
+
except Exception as e:
|
93 |
+
logger.error(f"Failed to initialize local HF model: {e}")
|
94 |
+
raise Exception("No LLM could be initialized")
|
95 |
+
|
96 |
+
llm_client, llm_type = initialize_llm()
|
97 |
|
98 |
+
# Initialize embedder
|
99 |
try:
|
100 |
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
101 |
logger.info("Sentence transformer initialized")
|
|
|
103 |
logger.error(f"Failed to initialize embedder: {e}")
|
104 |
embedder = None
|
105 |
|
106 |
+
# Download file with local fallback
|
107 |
+
async def download_file(task_id: str, ext: str) -> str | None:
|
|
|
108 |
try:
|
109 |
+
url = f"{GAIA_FILE_URL}{task_id}.{ext}"
|
110 |
+
async with aiohttp.ClientSession() as session:
|
111 |
+
async with session.get(url, timeout=10) as resp:
|
112 |
+
logger.info(f"GAIA API test for task {task_id} with .{ext}: HTTP {resp.status}")
|
113 |
+
if resp.status == 200:
|
114 |
+
os.makedirs("temp", exist_ok=True)
|
115 |
+
file_path = f"temp/{task_id}.{ext}"
|
116 |
+
with open(file_path, "wb") as f:
|
117 |
+
f.write(await resp.read())
|
118 |
+
return file_path
|
|
|
119 |
except Exception as e:
|
120 |
+
logger.warning(f"File download failed for {task_id}.{ext}: {e}")
|
121 |
+
local_path = f"temp/{task_id}.{ext}"
|
122 |
+
if os.path.exists(local_path):
|
123 |
+
logger.info(f"Using local file: {local_path}")
|
124 |
+
return local_path
|
125 |
+
return None
|
126 |
+
|
127 |
+
# Parse question to select tools
|
128 |
+
async def parse_question(state: JARVISState) -> JARVISState:
|
129 |
try:
|
130 |
question = state["question"]
|
131 |
task_id = state["task_id"]
|
132 |
tools_needed = ["search_tool"]
|
133 |
|
134 |
+
if llm_client:
|
135 |
prompt = ChatPromptTemplate.from_messages([
|
136 |
SystemMessage(content="""Select tools from: ['search_tool', 'multi_hop_search_tool', 'file_parser_tool', 'image_parser_tool', 'calculator_tool', 'document_retriever_tool', 'duckduckgo_search_tool', 'weather_info_tool', 'hub_stats_tool', 'guest_info_retriever_tool'].
|
137 |
Return JSON list, e.g., ["search_tool", "file_parser_tool"].
|
138 |
Rules:
|
139 |
- Always include "search_tool" unless purely computational.
|
140 |
+
- Use "multi_hop_search_tool" for complex queries (over 20 words or requiring multiple steps).
|
141 |
- Use "file_parser_tool" for data, tables, or Excel.
|
142 |
- Use "image_parser_tool" for images/videos.
|
143 |
- Use "calculator_tool" for math calculations.
|
|
|
150 |
HumanMessage(content=f"Query: {question}")
|
151 |
])
|
152 |
try:
|
153 |
+
if llm_type == "hf_local":
|
154 |
+
model, tokenizer = llm_client
|
155 |
+
inputs = tokenizer.apply_chat_template(
|
156 |
+
[{"role": "system", "content": prompt[0].content}, {"role": "user", "content": prompt[1].content}],
|
157 |
+
return_tensors="pt"
|
158 |
+
).to("mps")
|
159 |
+
outputs = model.generate(inputs, max_new_tokens=512, temperature=0.7)
|
160 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
161 |
+
tools_needed = json.loads(response.strip())
|
162 |
+
else:
|
163 |
+
response = llm_client.chat.completions.create(
|
164 |
+
model=llm_client.model if llm_type == "together" else HF_MODEL,
|
165 |
+
messages=[
|
166 |
+
{"role": "system", "content": prompt[0].content},
|
167 |
+
{"role": "user", "content": prompt[1].content}
|
168 |
+
],
|
169 |
+
max_tokens=512,
|
170 |
+
temperature=0.7
|
171 |
+
)
|
172 |
+
tools_needed = json.loads(response.choices[0].message.content.strip())
|
173 |
+
|
174 |
valid_tools = {
|
175 |
"search_tool", "multi_hop_search_tool", "file_parser_tool", "image_parser_tool",
|
176 |
"calculator_tool", "document_retriever_tool", "duckduckgo_search_tool",
|
|
|
178 |
}
|
179 |
tools_needed = [tool for tool in tools_needed if tool in valid_tools]
|
180 |
except Exception as e:
|
181 |
+
logger.warning(f"Task {task_id} tool selection failed: {e}")
|
182 |
+
state["error"] = f"Tool selection failed: {str(e)}"
|
183 |
|
184 |
# Keyword-based fallback
|
185 |
question_lower = question.lower()
|
186 |
+
if any(word in question_lower for word in ["image", "video", "picture"]):
|
187 |
tools_needed.append("image_parser_tool")
|
188 |
+
if any(word in question_lower for word in ["data", "table", "excel", ".txt", ".csv", ".xlsx"]):
|
189 |
tools_needed.append("file_parser_tool")
|
190 |
+
if any(word in question_lower for word in ["calculate", "math", "sum", "average", "total"]):
|
191 |
tools_needed.append("calculator_tool")
|
192 |
+
if any(word in question_lower for word in ["document", "pdf", "report", "menu"]):
|
193 |
tools_needed.append("document_retriever_tool")
|
194 |
+
if any(word in question_lower for word in ["weather", "temperature"]):
|
195 |
tools_needed.append("weather_info_tool")
|
196 |
+
if any(word in question_lower for word in ["model", "huggingface", "dataset"]):
|
197 |
tools_needed.append("hub_stats_tool")
|
198 |
+
if any(word in question_lower for word in ["guest", "name", "relation", "person"]):
|
199 |
tools_needed.append("guest_info_retriever_tool")
|
200 |
+
if len(question.split()) > 20 or "multiple" in question_lower:
|
201 |
tools_needed.append("multi_hop_search_tool")
|
202 |
+
if any(word in question_lower for word in ["search", "wikipedia", "online"]):
|
203 |
+
tools_needed.append("duckduckgo_search_tool")
|
204 |
+
|
205 |
+
# Check file availability
|
206 |
+
for ext in ["txt", "csv", "xlsx", "jpg", "pdf"]:
|
207 |
+
file_path = await download_file(task_id, ext)
|
208 |
+
if file_path:
|
209 |
+
if ext in ["txt", "csv", "xlsx"] and "file_parser_tool" not in tools_needed:
|
210 |
+
tools_needed.append("file_parser_tool")
|
211 |
+
if ext == "jpg" and "image_parser_tool" not in tools_needed:
|
212 |
+
tools_needed.append("image_parser_tool")
|
213 |
+
if ext == "pdf" and "document_retriever_tool" not in tools_needed:
|
214 |
+
tools_needed.append("document_retriever_tool")
|
215 |
+
state["metadata"] = state.get("metadata", {}) | {"file_ext": ext, "file_path": file_path}
|
216 |
+
break
|
217 |
+
|
218 |
+
state["tools_needed"] = list(set(tools_needed))
|
219 |
logger.info(f"Task {task_id}: Selected tools: {tools_needed}")
|
220 |
return state
|
221 |
except Exception as e:
|
222 |
logger.error(f"Error parsing task {task_id}: {e}")
|
223 |
+
state["error"] = f"Parse question failed: {str(e)}"
|
224 |
state["tools_needed"] = ["search_tool"]
|
225 |
return state
|
226 |
|
227 |
+
# Tool dispatcher
|
228 |
async def tool_dispatcher(state: JARVISState) -> JARVISState:
|
|
|
229 |
try:
|
230 |
updated_state = state.copy()
|
231 |
file_type = "jpg" if "image" in state["question"].lower() else "txt"
|
232 |
+
if any(word in state["question"].lower() for word in ["menu", "report"]):
|
233 |
file_type = "pdf"
|
234 |
elif "data" in state["question"].lower():
|
235 |
file_type = "xlsx"
|
236 |
|
|
|
|
|
237 |
for tool in updated_state["tools_needed"]:
|
238 |
try:
|
239 |
if tool == "search_tool":
|
240 |
+
result = search_tool(updated_state["question"])
|
241 |
+
updated_state["web_results"].extend([str(r) for r in result])
|
242 |
elif tool == "multi_hop_search_tool":
|
243 |
+
result = await multi_hop_search_tool.ainvoke({"query": updated_state["question"], "steps": 3, "llm_client": llm_client, "llm_type": llm_type})
|
244 |
+
updated_state["multi_hop_results"].extend([r["content"] for r in result])
|
245 |
+
await asyncio.sleep(2)
|
246 |
+
elif tool == "file_parser_tool":
|
247 |
+
for ext in ["txt", "csv", "xlsx"]:
|
248 |
+
file_path = await download_file(updated_state["task_id"], ext)
|
249 |
+
if file_path:
|
250 |
+
result = file_parser_tool(file_path)
|
251 |
+
updated_state["file_results"] = str(result)
|
252 |
+
break
|
253 |
+
elif tool == "image_parser_tool":
|
254 |
+
file_path = await download_file(updated_state["task_id"], "jpg")
|
255 |
+
if file_path:
|
256 |
+
result = image_parser_tool(file_path)
|
257 |
+
updated_state["image_results"] = str(result)
|
258 |
elif tool == "calculator_tool":
|
259 |
+
result = calculator_tool(updated_state["question"])
|
260 |
updated_state["calculation_results"] = str(result)
|
261 |
+
elif tool == "document_retriever_tool":
|
262 |
+
file_path = await download_file(updated_state["task_id"], "pdf")
|
263 |
+
if file_path:
|
264 |
+
result = document_retriever_tool({"task_id": updated_state["task_id"], "query": updated_state["question"], "file_type": "pdf"})
|
265 |
+
updated_state["document_results"] = str(result)
|
|
|
|
|
266 |
elif tool == "duckduckgo_search_tool":
|
267 |
+
result = duckduckgo_search_tool(updated_state["question"])
|
268 |
updated_state["web_results"].append(str(result))
|
269 |
elif tool == "weather_info_tool":
|
270 |
location = updated_state["question"].split("weather in ")[1].split()[0] if "weather in" in updated_state["question"].lower() else "Unknown"
|
271 |
+
result = weather_info_tool({"location": location})
|
272 |
updated_state["web_results"].append(str(result))
|
273 |
elif tool == "hub_stats_tool":
|
274 |
author = updated_state["question"].split("by ")[1].split()[0] if "by" in updated_state["question"].lower() else "Unknown"
|
275 |
+
result = hub_stats_tool({"author": author})
|
276 |
updated_state["web_results"].append(str(result))
|
277 |
elif tool == "guest_info_retriever_tool":
|
278 |
query = updated_state["question"].split("about ")[1] if "about" in updated_state["question"].lower() else updated_state["question"]
|
279 |
+
result = guest_info_retriever_tool({"query": query})
|
280 |
updated_state["web_results"].append(str(result))
|
281 |
+
updated_state["metadata"] = updated_state.get("metadata", {}) | {f"{tool}_executed": True}
|
282 |
except Exception as e:
|
283 |
logger.warning(f"Error in tool {tool} for task {updated_state['task_id']}: {str(e)}")
|
284 |
+
updated_state["error"] = f"Tool {tool} failed: {str(e)}"
|
285 |
+
updated_state["metadata"] = updated_state.get("metadata", {}) | {f"{tool}_error": str(e)}
|
286 |
|
287 |
logger.info(f"Task {updated_state['task_id']}: Tool results: {updated_state}")
|
288 |
return updated_state
|
289 |
except Exception as e:
|
290 |
logger.error(f"Tool dispatch failed for task {state['task_id']}: {e}")
|
291 |
+
updated_state["error"] = f"Tool dispatch failed: {str(e)}"
|
292 |
+
return updated_state
|
293 |
|
294 |
+
# Reasoning
|
295 |
async def reasoning(state: JARVISState) -> Dict[str, Any]:
|
|
|
296 |
try:
|
|
|
|
|
297 |
prompt = ChatPromptTemplate.from_messages([
|
298 |
SystemMessage(content="""Provide ONLY the exact answer (e.g., '90', 'HUE'). For USD, use two decimal places (e.g., '1234.00'). For lists, use comma-separated values (e.g., 'Smith, Lee'). For IOC codes, use three-letter codes (e.g., 'ARG'). No explanations or conversational text."""),
|
299 |
+
HumanMessage(content="""Task: {task_id}
|
300 |
+
Question: {question}
|
301 |
Web results: {web_results}
|
302 |
+
Multi-hop results: {multi_hop_results}
|
303 |
File results: {file_results}
|
304 |
Image results: {image_results}
|
305 |
Calculation results: {calculation_results}
|
306 |
Document results: {document_results}""")
|
307 |
])
|
308 |
+
messages = [
|
309 |
+
{"role": "system", "content": prompt[0].content},
|
310 |
+
{"role": "user", "content": prompt[1].content.format(
|
311 |
+
task_id=state["task_id"],
|
312 |
+
question=state["question"],
|
313 |
+
web_results="\n".join(state["web_results"]),
|
314 |
+
multi_hop_results="\n".join(state["multi_hop_results"]),
|
315 |
+
file_results=state["file_results"],
|
316 |
+
image_results=state["image_results"],
|
317 |
+
calculation_results=state["calculation_results"],
|
318 |
+
document_results=state["document_results"]
|
319 |
+
)}
|
320 |
+
]
|
321 |
+
for attempt in range(3):
|
|
|
|
|
|
|
|
|
322 |
try:
|
323 |
+
if llm_type == "hf_local":
|
324 |
+
model, tokenizer = llm_client
|
325 |
+
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("mps")
|
326 |
+
outputs = model.generate(inputs, max_new_tokens=512, temperature=0.7)
|
327 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
328 |
+
else:
|
329 |
+
response = llm_client.chat.completions.create(
|
330 |
+
model=llm_client.model if llm_type == "together" else HF_MODEL,
|
331 |
+
messages=messages,
|
332 |
+
max_tokens=512,
|
333 |
+
temperature=0.7
|
334 |
+
)
|
335 |
+
answer = response.choices[0].message.content.strip()
|
336 |
+
|
337 |
+
# Format answer
|
338 |
+
if "USD" in state["question"].lower():
|
339 |
+
try:
|
340 |
+
answer = f"{float(answer):.2f}"
|
341 |
+
except ValueError:
|
342 |
+
pass
|
343 |
+
if "before and after" in state["question"].lower():
|
344 |
+
answer = answer.replace(" and ", ", ")
|
345 |
+
if "IOC code" in state["question"].lower():
|
346 |
+
answer = answer.upper()[:3]
|
347 |
+
|
348 |
+
logger.info(f"Task {state['task_id']}: Answer: {answer}")
|
349 |
+
return {"answer": answer}
|
350 |
+
except Exception as e:
|
351 |
+
logger.warning(f"LLM retry {attempt + 1}/3 for task {state['task_id']}: {e}")
|
352 |
+
await asyncio.sleep(2)
|
353 |
+
state["error"] = "LLM failed after retries"
|
354 |
+
return {"answer": "Error: LLM failed after retries"}
|
355 |
except Exception as e:
|
356 |
logger.error(f"Reasoning failed for task {state['task_id']}: {e}")
|
357 |
+
state["error"] = f"Reasoning failed: {str(e)}"
|
358 |
return {"answer": f"Error: {str(e)}"}
|
359 |
|
360 |
+
# Router
|
361 |
def router(state: JARVISState) -> str:
|
|
|
362 |
if state["tools_needed"]:
|
363 |
return "tool_dispatcher"
|
364 |
return "reasoning"
|
365 |
|
366 |
+
# Define StateGraph
|
367 |
workflow = StateGraph(JARVISState)
|
368 |
workflow.add_node("parse", parse_question)
|
369 |
workflow.add_node("tool_dispatcher", tool_dispatcher)
|
|
|
381 |
workflow.add_edge("reasoning", END)
|
382 |
graph = workflow.compile()
|
383 |
|
384 |
+
# Agent class
|
385 |
+
class JARVISAgent:
|
386 |
def __init__(self):
|
387 |
+
self.state = JARVISState(
|
388 |
+
task_id="",
|
389 |
+
question="",
|
390 |
+
tools_needed=[],
|
391 |
+
web_results=[],
|
392 |
+
file_results="",
|
393 |
+
image_results="",
|
394 |
+
calculation_results="",
|
395 |
+
document_results="",
|
396 |
+
multi_hop_results=[],
|
397 |
+
messages=[],
|
398 |
+
answer="",
|
399 |
+
results_table=[],
|
400 |
+
status_output="",
|
401 |
+
error=None,
|
402 |
+
metadata={}
|
403 |
+
)
|
404 |
+
logger.info("JARVISAgent initialized.")
|
405 |
|
406 |
async def process_question(self, task_id: str, question: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
407 |
state = JARVISState(
|
408 |
task_id=task_id,
|
409 |
question=question,
|
|
|
413 |
image_results="",
|
414 |
calculation_results="",
|
415 |
document_results="",
|
416 |
+
multi_hop_results=[],
|
417 |
messages=[HumanMessage(content=question)],
|
418 |
+
answer="",
|
419 |
+
results_table=[],
|
420 |
+
status_output="",
|
421 |
+
error=None,
|
422 |
+
metadata={}
|
423 |
)
|
424 |
try:
|
425 |
result = await graph.ainvoke(state)
|
426 |
answer = result["answer"] or "Unknown"
|
427 |
+
logger.info(f"Task {task_id}: Final answer: {answer}")
|
428 |
+
self.state.results_table.append({"Task ID": task_id, "Question": question, "Answer": answer})
|
429 |
+
self.state.metadata = self.state.get("metadata", {}) | {"last_task": task_id, "answer": answer}
|
430 |
return answer
|
431 |
except Exception as e:
|
432 |
logger.error(f"Error processing task {task_id}: {e}")
|
433 |
+
self.state.results_table.append({"Task ID": task_id, "Question": question, "Answer": f"Error: {e}"})
|
434 |
+
self.state.error = f"Task {task_id} failed: {str(e)}"
|
435 |
return f"Error: {str(e)}"
|
436 |
finally:
|
437 |
for ext in ["txt", "csv", "xlsx", "jpg", "pdf"]:
|
438 |
+
file_path = f"temp/{task_id}.{ext}"
|
439 |
if os.path.exists(file_path):
|
440 |
try:
|
441 |
os.remove(file_path)
|
442 |
+
logger.info(f"Removed temp file: {file_path}")
|
443 |
except Exception as e:
|
444 |
logger.error(f"Error removing file {file_path}: {e}")
|
445 |
|
446 |
+
async def process_all_questions(self, profile: gr.OAuthProfile | None):
|
447 |
+
if not profile:
|
448 |
+
logger.error("User not logged in.")
|
449 |
+
self.state.status_output = "Please Login to Hugging Face."
|
450 |
+
return pd.DataFrame(self.state.results_table), self.state.status_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
451 |
|
452 |
+
username = f"{profile.username}"
|
453 |
+
logger.info(f"User logged in: {username}")
|
454 |
+
questions_url = f"{GAIA_API_URL}/questions"
|
455 |
+
submit_url = f"{GAIA_API_URL}/submit"
|
456 |
+
agent_code = f"https://huggingface.co/spaces/{SPACE_ID}/tree/main"
|
457 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
458 |
try:
|
459 |
+
response = requests.get(questions_url, timeout=15)
|
460 |
+
response.raise_for_status()
|
461 |
+
questions = response.json()
|
462 |
+
logger.info(f"Fetched {len(questions)} questions.")
|
463 |
+
except Exception as e:
|
464 |
+
logger.error(f"Error fetching questions: {e}")
|
465 |
+
self.state.status_output = f"Error fetching questions: {e}"
|
466 |
+
self.state.error = f"Fetch questions failed: {str(e)}"
|
467 |
+
return pd.DataFrame(self.state.results_table), self.state.status_output
|
468 |
+
|
469 |
+
answers_payload = []
|
470 |
+
for item in questions:
|
471 |
+
task_id = item.get("task_id")
|
472 |
+
question = item.get("question")
|
473 |
+
if not task_id or not question:
|
474 |
+
logger.warning(f"Skipping invalid item: {item}")
|
475 |
+
continue
|
476 |
+
answer = await self.process_question(task_id, question)
|
477 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
|
478 |
+
|
479 |
+
if not answers_payload:
|
480 |
+
logger.error("No answers generated.")
|
481 |
+
self.state.status_output = "No answers to submit."
|
482 |
+
self.state.error = "No answers generated"
|
483 |
+
return pd.DataFrame(self.state.results_table), self.state.status_output
|
484 |
+
|
485 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
486 |
+
try:
|
487 |
+
response = requests.post(submit_url, json=submission_data, timeout=120)
|
488 |
+
response.raise_for_status()
|
489 |
+
result_data = response.json()
|
490 |
+
self.state.status_output = (
|
491 |
+
f"Submission Successful!\n"
|
492 |
+
f"User: {result_data.get('username')}\n"
|
493 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
494 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
495 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
496 |
+
)
|
497 |
+
self.state.metadata = self.state.get("metadata", {}) | {"submission_score": result_data.get('score', 'N/A')}
|
498 |
except Exception as e:
|
499 |
+
logger.error(f"Submission failed: {e}")
|
500 |
+
self.state.status_output = f"Submission Failed: {e}"
|
501 |
+
self.state.error = f"Submission failed: {str(e)}"
|
502 |
|
503 |
+
return pd.DataFrame(self.state.results_table), self.state.status_output
|
|
|
|
|
504 |
|
505 |
+
# Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
506 |
with gr.Blocks() as demo:
|
507 |
+
gr.Markdown("# Evolved JARVIS GAIA Agent")
|
508 |
gr.Markdown(
|
509 |
"""
|
510 |
**Instructions:**
|
|
|
514 |
|
515 |
---
|
516 |
**Disclaimers:**
|
517 |
+
Uses Hugging Face Inference, Together AI, SERPAPI, and OpenWeatherMap for GAIA benchmark.
|
518 |
"""
|
519 |
)
|
520 |
+
with gr.Row():
|
521 |
+
gr.LoginButton()
|
522 |
+
gr.LogoutButton()
|
523 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
524 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
525 |
+
results_table = gr.DataFrame(label="Questions and Answers", wrap=True, headers=["Task ID", "Question", "Answer"])
|
526 |
|
527 |
+
agent = JARVISAgent()
|
528 |
run_button.click(
|
529 |
+
fn=agent.process_all_questions,
|
530 |
+
outputs=[results_table, status_output]
|
531 |
)
|
532 |
|
|
|
533 |
if __name__ == "__main__":
|
534 |
logger.info("\n" + "-"*30 + " App Starting " + "-"*30)
|
535 |
logger.info(f"SPACE_ID: {SPACE_ID}")
|
requirements.txt
CHANGED
@@ -4,6 +4,7 @@ pandas
|
|
4 |
PyPDF2
|
5 |
easyocr
|
6 |
langchain
|
|
|
7 |
langchain-community
|
8 |
langgraph
|
9 |
sentence-transformers
|
@@ -15,4 +16,8 @@ sympy
|
|
15 |
openpyxl
|
16 |
smolagents
|
17 |
datasets
|
18 |
-
|
|
|
|
|
|
|
|
|
|
4 |
PyPDF2
|
5 |
easyocr
|
6 |
langchain
|
7 |
+
langchain-core
|
8 |
langchain-community
|
9 |
langgraph
|
10 |
sentence-transformers
|
|
|
16 |
openpyxl
|
17 |
smolagents
|
18 |
datasets
|
19 |
+
transformers
|
20 |
+
asyncio
|
21 |
+
serpapi
|
22 |
+
duckduckgo-search
|
23 |
+
torch
|
result.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
state.py
CHANGED
@@ -1,7 +1,27 @@
|
|
1 |
-
from typing import TypedDict, List
|
2 |
-
from langchain_core.messages import
|
3 |
|
4 |
class JARVISState(TypedDict):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
task_id: str
|
6 |
question: str
|
7 |
tools_needed: List[str]
|
@@ -10,5 +30,10 @@ class JARVISState(TypedDict):
|
|
10 |
image_results: str
|
11 |
calculation_results: str
|
12 |
document_results: str
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import TypedDict, List, Dict, Optional, Any
|
2 |
+
from langchain_core.messages import BaseMessage
|
3 |
|
4 |
class JARVISState(TypedDict):
|
5 |
+
"""
|
6 |
+
State dictionary for the JARVIS GAIA Agent, used with LangGraph to manage task processing.
|
7 |
+
|
8 |
+
Attributes:
|
9 |
+
task_id: Unique identifier for the GAIA task.
|
10 |
+
question: The question text to be answered.
|
11 |
+
tools_needed: List of tool names to be used for the task.
|
12 |
+
web_results: List of web search results (e.g., from SERPAPI, DuckDuckGo).
|
13 |
+
file_results: Parsed content from text, CSV, or Excel files.
|
14 |
+
image_results: OCR or description results from image files.
|
15 |
+
calculation_results: Results from mathematical calculations.
|
16 |
+
document_results: Extracted content from PDF documents.
|
17 |
+
multi_hop_results: Results from iterative multi-hop searches.
|
18 |
+
messages: List of messages for LLM context (e.g., user prompts, system instructions).
|
19 |
+
answer: Final answer for the task, formatted for GAIA submission.
|
20 |
+
results_table: List of task results for Gradio display (Task ID, Question, Answer).
|
21 |
+
status_output: Status message for Gradio output (e.g., submission result).
|
22 |
+
error: Optional error message if task processing fails.
|
23 |
+
metadata: Optional metadata (e.g., timestamps, tool execution status).
|
24 |
+
"""
|
25 |
task_id: str
|
26 |
question: str
|
27 |
tools_needed: List[str]
|
|
|
30 |
image_results: str
|
31 |
calculation_results: str
|
32 |
document_results: str
|
33 |
+
multi_hop_results: List[str]
|
34 |
+
messages: List[BaseMessage]
|
35 |
+
answer: str
|
36 |
+
results_table: List[Dict[str, str]]
|
37 |
+
status_output: str
|
38 |
+
error: Optional[str]
|
39 |
+
metadata: Optional[Dict[str, Any]]
|
test.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
|
4 |
+
|
5 |
+
headers = {"Authorization": f"Bearer {os.getenv('TOGETHER_API_KEY')}"}
|
6 |
+
response = requests.get("https://api.together.ai/models", headers=headers)
|
7 |
+
print(response.json())
|
tools/search.py
CHANGED
@@ -1,46 +1,104 @@
|
|
1 |
-
from langchain_core.tools import tool
|
2 |
-
import logging
|
3 |
-
import requests
|
4 |
import os
|
|
|
|
|
|
|
5 |
from typing import List, Dict, Any
|
6 |
-
from
|
|
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
search_results = [{"content": r.get("snippet", ""), "url": r.get("link", "")} for r in results]
|
26 |
-
return search_results or [{"content": "No search results", "url": ""}]
|
27 |
-
except Exception as e:
|
28 |
-
logger.error(f"Error in search_tool: {e}")
|
29 |
-
return [{"content": f"Search failed: {str(e)}", "url": ""}]
|
30 |
-
|
31 |
-
@tool
|
32 |
-
async def multi_hop_search_tool(query: str, steps: int = 3) -> List[Dict[str, Any]]:
|
33 |
-
"""Perform a multi-hop search."""
|
34 |
-
try:
|
35 |
-
results = []
|
36 |
-
current_query = query
|
37 |
-
for step in range(steps):
|
38 |
-
step_results = await search_tool.invoke({"query": current_query})
|
39 |
-
results.extend(step_results)
|
40 |
-
current_query = f"{current_query} more details"
|
41 |
-
logger.info(f"Multi-hop step {step + 1}: {current_query}")
|
42 |
-
await asyncio.sleep(2) # Avoid rate limits
|
43 |
-
return results or [{"content": "No multi-hop results", "url": ""}]
|
44 |
-
except Exception as e:
|
45 |
-
logger.error(f"Error in multi_hop_search_tool: {e}")
|
46 |
-
return [{"content": f"Multi-hop search failed: {str(e)}", "url": ""}]
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
from serpapi import GoogleSearch
|
3 |
+
from langchain.tools import Tool
|
4 |
+
import asyncio
|
5 |
from typing import List, Dict, Any
|
6 |
+
from langchain_core.prompts import ChatPromptTemplate
|
7 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
8 |
|
9 |
+
def search_tool(query: str) -> List[str]:
|
10 |
+
"""
|
11 |
+
Perform a web search using SERPAPI with retries.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
query: Search query string.
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
List of search result snippets.
|
18 |
+
|
19 |
+
Raises:
|
20 |
+
Exception: If search fails after retries.
|
21 |
+
"""
|
22 |
+
params = {
|
23 |
+
"q": query,
|
24 |
+
"api_key": os.getenv("SERPAPI_API_KEY"),
|
25 |
+
"num": 5,
|
26 |
+
}
|
27 |
+
|
28 |
+
for attempt in range(3):
|
29 |
+
try:
|
30 |
+
search = GoogleSearch(params, timeout=30)
|
31 |
+
results = search.get_dict()
|
32 |
+
organic_results = results.get("organic_results", [])
|
33 |
+
return [r.get("snippet", "") for r in organic_results]
|
34 |
+
except Exception as e:
|
35 |
+
print(f"INFO - SERPAPI retry {attempt + 1}/3 due to: {e}")
|
36 |
+
asyncio.sleep(2)
|
37 |
+
|
38 |
+
raise Exception("SERPAPI failed after retries")
|
39 |
|
40 |
+
async def multi_hop_search_tool(query: str, steps: int = 3, llm_client: Any = None, llm_type: str = None) -> List[Dict[str, str]]:
|
41 |
+
"""
|
42 |
+
Perform iterative web searches for complex queries, refining the query using an LLM.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
query: Initial search query.
|
46 |
+
steps: Number of search iterations.
|
47 |
+
llm_client: LLM client for query refinement.
|
48 |
+
llm_type: Type of LLM client ("together", "hf_api", or "hf_local").
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
List of dictionaries containing search result content.
|
52 |
+
"""
|
53 |
+
results = []
|
54 |
+
current_query = query
|
55 |
+
|
56 |
+
for step in range(steps):
|
57 |
+
try:
|
58 |
+
# Perform search
|
59 |
+
search_results = search_tool(current_query)
|
60 |
+
results.extend([{"content": str(r)} for r in search_results])
|
61 |
+
|
62 |
+
# Refine query using LLM if available
|
63 |
+
if llm_client and step < steps - 1:
|
64 |
+
prompt = ChatPromptTemplate.from_messages([
|
65 |
+
SystemMessage(content="""Refine the following query to dig deeper into the topic, focusing on missing details or related aspects. Return ONLY the refined query as plain text, no explanations."""),
|
66 |
+
HumanMessage(content=f"Original query: {current_query}\nPrevious results: {json.dumps(search_results[:2], indent=2)}")
|
67 |
+
])
|
68 |
+
messages = [
|
69 |
+
{"role": "system", "content": prompt[0].content},
|
70 |
+
{"role": "user", "content": prompt[1].content}
|
71 |
+
]
|
72 |
+
|
73 |
+
try:
|
74 |
+
if llm_type == "hf_local":
|
75 |
+
model, tokenizer = llm_client
|
76 |
+
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("mps")
|
77 |
+
outputs = model.generate(inputs, max_new_tokens=100, temperature=0.7)
|
78 |
+
refined_query = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
79 |
+
else:
|
80 |
+
response = llm_client.chat.completions.create(
|
81 |
+
model=llm_client.model if llm_type == "together" else "meta-llama/Llama-3.2-1B-Instruct",
|
82 |
+
messages=messages,
|
83 |
+
max_tokens=100,
|
84 |
+
temperature=0.7
|
85 |
+
)
|
86 |
+
refined_query = response.choices[0].message.content.strip()
|
87 |
+
|
88 |
+
current_query = refined_query if refined_query else f"more details on {current_query}"
|
89 |
+
except Exception as e:
|
90 |
+
print(f"INFO - Query refinement failed at step {step + 1}: {e}")
|
91 |
+
current_query = f"more details on {current_query}"
|
92 |
+
|
93 |
+
await asyncio.sleep(1) # Rate limit
|
94 |
+
except Exception as e:
|
95 |
+
print(f"INFO - Multi-hop search step {step + 1} failed: {e}")
|
96 |
+
break
|
97 |
+
|
98 |
+
return results
|
99 |
|
100 |
+
multi_hop_search_tool = Tool.from_function(
|
101 |
+
func=multi_hop_search_tool,
|
102 |
+
name="multi_hop_search_tool",
|
103 |
+
description="Performs iterative web searches for complex queries, refining the query with an LLM."
|
104 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|