File size: 5,772 Bytes
cb7223a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5137267
 
 
cb7223a
 
 
 
 
 
 
 
 
5137267
 
 
 
 
 
 
 
cb7223a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# utils/visualize_pca.py
import os
import tempfile
import logging
from functools import lru_cache
from typing import Tuple, Optional, Union, List

import torch
from optipfair.bias import visualize_pca, visualize_mean_differences, visualize_heatmap
from transformers import AutoModelForCausalLM, AutoTokenizer

import matplotlib
matplotlib.use('Agg')  # Use 'Agg' backend for non-GUI environments

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

@lru_cache(maxsize=None)
def load_model_tokenizer(model_name: str):
    """
    Loads the model and tokenizer on the CPU once and caches the result.
    """
    logger.info(f"Loading model and tokenizer for '{model_name}'")
    
    # Get HF token from environment for gated models
    hf_token = os.getenv("HF_TOKEN")
    
    # Device selection: MPS (Apple Silicon) > CUDA > CPU
    if torch.cuda.is_available():
        device = torch.device("cuda")
    elif torch.mps.is_available():
        device = torch.device("mps")
    else:
        device = torch.device("cpu")
    logger.info(f"Using device: {device}")

    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        token=hf_token  # ← AÑADIR ESTA LÍNEA
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_name,
        token=hf_token  # ← AÑADIR ESTA LÍNEA
    )

    model = model.to(device)
    
    logger.info(f"Model loaded on device: {next(model.parameters()).device}")

    return model, tokenizer

def run_visualize_pca(
    model_name: str,
    prompt_pair: Tuple[str, str],
    layer_key: str,
    highlight_diff: bool = True,
    output_dir: Optional[str] = None,
    figure_format: str = "png",
    pair_index: int = 0,
) -> str:
    if output_dir is None:
        output_dir = tempfile.mkdtemp(prefix="optipfair_pca_")
    os.makedirs(output_dir, exist_ok=True)

    model, tokenizer = load_model_tokenizer(model_name)

    visualize_pca(
        model=model,
        tokenizer=tokenizer,
        prompt_pair=prompt_pair,
        layer_key=layer_key,
        highlight_diff=highlight_diff,
        output_dir=output_dir,
        figure_format=figure_format,
        pair_index=pair_index
    )

    layer_parts = layer_key.split("_")
    layer_type = "_".join(layer_parts[:-1])
    layer_num = layer_parts[-1]
    filename = build_visualization_filename(
        vis_type="pca",
        layer_type=layer_type,
        layer_num=layer_num,
        pair_index=pair_index,
        figure_format=figure_format
    )
    filepath = os.path.join(output_dir, filename)

    if not os.path.isfile(filepath):
        raise FileNotFoundError(f"Expected image file not found: {filepath}")

    logger.info(f"PCA image saved at {filepath}")
    return filepath

def run_visualize_mean_diff(
    model_name: str,
    prompt_pair: Tuple[str, str],
    layer_type: str,  # Changed from layer_key to layer_type
    figure_format: str = "png",
    output_dir: Optional[str] = None,
    pair_index: int = 0,
) -> str:
    if output_dir is None:
        output_dir = tempfile.mkdtemp(prefix="optipfair_mean_diff_")
    os.makedirs(output_dir, exist_ok=True)

    model, tokenizer = load_model_tokenizer(model_name)

    visualize_mean_differences(
        model=model,
        tokenizer=tokenizer,
        prompt_pair=prompt_pair,
        layer_type=layer_type,
        layers="all",  # By default, show all layers
        output_dir=output_dir,
        figure_format=figure_format,
        pair_index=pair_index
    )

    filename = build_visualization_filename(
        vis_type="mean_diff",
        layer_type=layer_type,
        pair_index=pair_index,
        figure_format=figure_format
    )
    filepath = os.path.join(output_dir, filename)
    if not os.path.isfile(filepath):
        raise FileNotFoundError(f"Expected image file not found: {filepath}")
    logger.info(f"Mean-diff image saved at {filepath}")
    return filepath

def run_visualize_heatmap(
    model_name: str,
    prompt_pair: Tuple[str, str],
    layer_key: str,
    figure_format: str = "png",
    output_dir: Optional[str] = None,
    pair_index: int = 0,
) -> str:
    if output_dir is None:
        output_dir = tempfile.mkdtemp(prefix="optipfair_heatmap_")
    os.makedirs(output_dir, exist_ok=True)

    model, tokenizer = load_model_tokenizer(model_name)

    visualize_heatmap(
        model=model,
        tokenizer=tokenizer,
        prompt_pair=prompt_pair,
        layer_key=layer_key,
        output_dir=output_dir,
        figure_format=figure_format,
        pair_index=pair_index
    )

    parts = layer_key.split("_")
    layer_type = "_".join(parts[:-1])
    layer_num = parts[-1]
    filename = build_visualization_filename(
        vis_type="heatmap",
        layer_type=layer_type,
        layer_num=layer_num,
        pair_index=pair_index,
        figure_format=figure_format
    )
    filepath = os.path.join(output_dir, filename)
    if not os.path.isfile(filepath):
        raise FileNotFoundError(f"Expected image file not found: {filepath}")
    logger.info(f"Heatmap image saved at {filepath}")
    return filepath

def build_visualization_filename(
    vis_type: str,
    layer_type: str,
    layer_num: str = None,
    layers: Union[str, List[int]] = None,
    pair_index: int = 0,
    figure_format: str = "png"
) -> str:
    """
    Builds the filename for any visualization.
    """
    if vis_type == "mean_diff":
        # The visualize_mean_differences function does not include the layer number in the filename
        return f"mean_diff_{layer_type}_pair{pair_index}.{figure_format}"
    elif vis_type in ("pca", "heatmap"):
        return f"{vis_type}_{layer_type}_{layer_num}_pair{pair_index}.{figure_format}"
    else:
        raise ValueError(f"Unknown visualization type: {vis_type}")