Spaces:
Runtime error
Runtime error
| from dotenv import load_dotenv | |
| import gradio as gr | |
| import json | |
| import html | |
| import logging | |
| import numpy as np | |
| from utils.model import Model | |
| from utils.metric import metric_rouge_score | |
| from pages.summarization_playground import generate_answer | |
| load_dotenv() | |
| def display_results(response_list): | |
| overall_score = np.mean([r['metric_score']['rouge_score'] for r in response_list]) | |
| html_output = f"<h2>Overall Score: {overall_score:.2f}</h2>" | |
| for i, item in enumerate(response_list, 1): | |
| dialogue = item['dialogue'] | |
| summary = item['summary'] | |
| response = item['response'] | |
| rouge_score = item['metric_score']['rouge_score'] | |
| dialogue = html.escape(item['dialogue']).replace('\n', '<br>') | |
| summary = html.escape(item['summary']).replace('\n', '<br>') | |
| response = html.escape(item['response']).replace('\n', '<br>') | |
| html_output += f""" | |
| <details> | |
| <summary>Response {i} (Rouge Score: {rouge_score:.2f})</summary> | |
| <div style="display: flex; justify-content: space-between;"> | |
| <div style="width: 30%;"> | |
| <h3>Dialogue</h3> | |
| <pre style="white-space: pre-wrap; word-wrap: break-word;">{dialogue}</pre> | |
| </div> | |
| <div style="width: 30%;"> | |
| <h3>Summary</h3> | |
| <pre style="white-space: pre-wrap; word-wrap: break-word;">{summary}</pre> | |
| </div> | |
| <div style="width: 30%;"> | |
| <h3>Response</h3> | |
| <pre style="white-space: pre-wrap; word-wrap: break-word;">{response}</pre> | |
| </div> | |
| </div> | |
| </details> | |
| """ | |
| return html_output | |
| def process(model_selection, prompt, num=10): | |
| response_list = [] | |
| with open("test_samples/test_data.json", "r") as file: | |
| json_data = file.read() | |
| dataset = json.loads(json_data) | |
| for i, data in enumerate(dataset): | |
| logging.info(f"Start testing datapoint {i+1}") | |
| dialogue = data['dialogue'] | |
| format = data['format'] | |
| summary = data['summary'] | |
| response = generate_answer(dialogue, model_selection, prompt + f' Output following {format} format.') | |
| rouge_score = metric_rouge_score(response, summary) | |
| response_list.append( | |
| { | |
| 'dialogue': dialogue, | |
| 'summary': summary, | |
| 'response': response, | |
| 'metric_score': { | |
| 'rouge_score': rouge_score | |
| } | |
| } | |
| ) | |
| logging.info(f"Complete testing datapoint {i+1}") | |
| return display_results(response_list) | |
| def create_batch_evaluation_interface(): | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## Here are evaluation setups. It will run though datapoints in test_data.josn to generate and evaluate. Show results once finished.") | |
| model_dropdown = gr.Dropdown(choices=Model.__model_list__, label="Choose a model", value=Model.__model_list__[0]) | |
| Template_text = gr.Textbox(value="""Summarize the following dialogue""", label='Input Prompting Template', lines=8, placeholder='Input your prompts') | |
| submit_button = gr.Button("✨ Submit ✨") | |
| output = gr.HTML(label="Results") | |
| submit_button.click( | |
| process, | |
| inputs=[model_dropdown, Template_text], | |
| outputs=output | |
| ) | |
| return demo | |
| if __name__ == "__main__": | |
| demo = create_batch_evaluation_interface() | |
| demo.launch() |