File size: 6,663 Bytes
2e20325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import abc

import gradio as gr

from gen_table import *
from meta_data import *

head_style = """
<style>
@media (min-width: 1536px)
{
    .gradio-container {
        min-width: var(--size-full) !important;
    }
}
</style>
"""


def math_main_tab(results):
    _, check_box = BUILD_L1_DF(results)
    table = generate_table(results)
    table['Rank'] = list(range(1, len(table) + 1))
    type_map = check_box['type_map']
    type_map['Rank'] = 'number'

    with gr.Row():
        checkbox_group = gr.CheckboxGroup(choices=check_box['all'], value=check_box['required'], label='Evaluation Dimension')
        circular = gr.CheckboxGroup(choices=['CircularEval'], value=[], label='Evaluation Mode')

    headers = ['Rank'] + check_box['essential'] + checkbox_group.value
    with gr.Row():
        model_name = gr.Textbox(value='Input the Model Name (fuzzy)', label='Model Name')
        model_size = gr.CheckboxGroup(choices=MODEL_SIZE, value=MODEL_SIZE, label='Model Size')
        model_type = gr.CheckboxGroup(choices=MODEL_TYPE, value=MODEL_TYPE, label='Model Type')

    data_component = gr.components.DataFrame(value=table[headers], datatype=[type_map[x] for x in headers])

    def filter_df(fields, model_name, model_size, model_type, circular):
        results = load_results()['results']
        headers = ['Rank'] + check_box['essential'] + fields
        circ_flag = 'CircularEval' in circular
        if circ_flag:
            headers = [x for x in headers if x not in NON_MCQ_DATASETS]

        df = generate_table(results, circular=circ_flag)

        df['flag'] = [model_size_flag(x, model_size) for x in df['Param (B)']]
        df = df[df['flag']]
        df.pop('flag')
        if len(df):
            df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
            df = df[df['flag']]
            df.pop('flag')
        df['Rank'] = list(range(1, len(df) + 1))
        default_val = 'Input the Model Name (fuzzy)'
        if model_name != default_val:
            method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in df['Method']]
            flag = [model_name.lower() in name for name in method_names]
            df['TEMP'] = flag
            df = df[df['TEMP'] == True] 
            df.pop('TEMP')

        comp = gr.components.DataFrame(value=df[headers], datatype=[type_map[x] for x in headers])
        return comp

    for cbox in [checkbox_group, model_size, model_type, circular]:
        cbox.change(fn=filter_df, inputs=[checkbox_group, model_name, model_size, model_type, circular], outputs=data_component)
    model_name.submit(fn=filter_df, inputs=[checkbox_group, model_name, model_size, model_type, circular], outputs=data_component)


def dataset_tab(results, struct, dataset):
    s = struct
    s.table, s.check_box = BUILD_L2_DF(results, dataset)
    s.type_map = s.check_box['type_map']
    s.type_map['Rank'] = 'number'

    with gr.Row():
        s.checkbox_group = gr.CheckboxGroup(choices=s.check_box['all'], value=s.check_box['required'], label=f'{dataset} CheckBoxes')
        s.circular = gr.CheckboxGroup(choices=['CircularEval'], value=[], label='Evaluation Mode')

    s.headers = ['Rank'] + s.check_box['essential'] + s.checkbox_group.value
    s.table['Rank'] = list(range(1, len(s.table) + 1))

    with gr.Row():
        s.model_name = gr.Textbox(value='Input the Model Name (fuzzy)', label='Model Name')
        s.model_size = gr.CheckboxGroup(choices=MODEL_SIZE, value=MODEL_SIZE, label='Model Size')
        s.model_type = gr.CheckboxGroup(choices=MODEL_TYPE, value=MODEL_TYPE, label='Model Type')

    s.data_component = gr.components.DataFrame(value=s.table[s.headers], datatype=[s.type_map[x] for x in s.headers])
    s.dataset = gr.Textbox(value=dataset, label=dataset, visible=False)

    def filter_df_l2(dataset_name, fields, model_name, model_size, model_type, circular):
        results = load_results()['results']
        s = structs[DATASETS.index(dataset_name)]
        headers = ['Rank'] + s.check_box['essential'] + fields
        circ_flag = 'CircularEval' in circular
        if circ_flag and dataset_name in NON_MCQ_DATASETS:
            circ_flag = False

        df, _ = BUILD_L2_DF(results, dataset_name, circular=circ_flag)
        df['flag'] = [model_size_flag(x, model_size) for x in df['Param (B)']]
        df = df[df['flag']]
        df.pop('flag')
        if len(df):
            df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
            df = df[df['flag']]
            df.pop('flag')
        df['Rank'] = list(range(1, len(df) + 1))
        default_val = 'Input the Model Name (fuzzy)'
        if model_name != default_val:
            method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in df['Method']]
            flag = [model_name.lower() in name for name in method_names]
            df['TEMP'] = flag
            df = df[df['TEMP'] == True] 
            df.pop('TEMP')

        comp = gr.components.DataFrame(value=df[headers], datatype=[s.type_map[x] for x in headers])
        return comp

    for cbox in [s.checkbox_group, s.model_size, s.model_type, s.circular]:
        cbox.change(
            fn=filter_df_l2,
            inputs=[s.dataset, s.checkbox_group, s.model_name, s.model_size, s.model_type, s.circular],
            outputs=s.data_component)
    s.model_name.submit(
        fn=filter_df_l2, 
        inputs=[s.dataset, s.checkbox_group, s.model_name, s.model_size, s.model_type, s.circular],
        outputs=s.data_component)

    
with gr.Blocks(title="Spatial Leaderboard", head=head_style) as demo:
    results = load_results()['results']
    N_MODEL = len(results)
    DATASETS = []
    for m in results:
        DATASETS.extend(results[m].keys())
    DATASETS = [d for d in set(DATASETS) if d != 'META' and 'circular' not in d]
    

    N_DATA = len(DATASETS)
    structs = [abc.abstractproperty() for _ in range(N_DATA)]

    gr.Markdown(LEADERBORAD_INTRODUCTION)

    with gr.Tabs(elem_classes='tab-buttons') as tabs:
        with gr.TabItem('πŸ… LMM Spatial Leaderboard', elem_id='main', id=0):
            math_main_tab(results)
            
        for i, dataset in enumerate(DATASETS):

            with gr.TabItem(
                f'πŸ“Š {dataset}', elem_id=dataset, id=i + 2):
                dataset_tab(results, structs[i], dataset)

    with gr.Row():
        with gr.Accordion('Citation', open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                elem_id='citation-button')

if __name__ == '__main__':
    demo.launch(server_name='0.0.0.0')