File size: 6,663 Bytes
2e20325 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import abc
import gradio as gr
from gen_table import *
from meta_data import *
head_style = """
<style>
@media (min-width: 1536px)
{
.gradio-container {
min-width: var(--size-full) !important;
}
}
</style>
"""
def math_main_tab(results):
_, check_box = BUILD_L1_DF(results)
table = generate_table(results)
table['Rank'] = list(range(1, len(table) + 1))
type_map = check_box['type_map']
type_map['Rank'] = 'number'
with gr.Row():
checkbox_group = gr.CheckboxGroup(choices=check_box['all'], value=check_box['required'], label='Evaluation Dimension')
circular = gr.CheckboxGroup(choices=['CircularEval'], value=[], label='Evaluation Mode')
headers = ['Rank'] + check_box['essential'] + checkbox_group.value
with gr.Row():
model_name = gr.Textbox(value='Input the Model Name (fuzzy)', label='Model Name')
model_size = gr.CheckboxGroup(choices=MODEL_SIZE, value=MODEL_SIZE, label='Model Size')
model_type = gr.CheckboxGroup(choices=MODEL_TYPE, value=MODEL_TYPE, label='Model Type')
data_component = gr.components.DataFrame(value=table[headers], datatype=[type_map[x] for x in headers])
def filter_df(fields, model_name, model_size, model_type, circular):
results = load_results()['results']
headers = ['Rank'] + check_box['essential'] + fields
circ_flag = 'CircularEval' in circular
if circ_flag:
headers = [x for x in headers if x not in NON_MCQ_DATASETS]
df = generate_table(results, circular=circ_flag)
df['flag'] = [model_size_flag(x, model_size) for x in df['Param (B)']]
df = df[df['flag']]
df.pop('flag')
if len(df):
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
df = df[df['flag']]
df.pop('flag')
df['Rank'] = list(range(1, len(df) + 1))
default_val = 'Input the Model Name (fuzzy)'
if model_name != default_val:
method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in df['Method']]
flag = [model_name.lower() in name for name in method_names]
df['TEMP'] = flag
df = df[df['TEMP'] == True]
df.pop('TEMP')
comp = gr.components.DataFrame(value=df[headers], datatype=[type_map[x] for x in headers])
return comp
for cbox in [checkbox_group, model_size, model_type, circular]:
cbox.change(fn=filter_df, inputs=[checkbox_group, model_name, model_size, model_type, circular], outputs=data_component)
model_name.submit(fn=filter_df, inputs=[checkbox_group, model_name, model_size, model_type, circular], outputs=data_component)
def dataset_tab(results, struct, dataset):
s = struct
s.table, s.check_box = BUILD_L2_DF(results, dataset)
s.type_map = s.check_box['type_map']
s.type_map['Rank'] = 'number'
with gr.Row():
s.checkbox_group = gr.CheckboxGroup(choices=s.check_box['all'], value=s.check_box['required'], label=f'{dataset} CheckBoxes')
s.circular = gr.CheckboxGroup(choices=['CircularEval'], value=[], label='Evaluation Mode')
s.headers = ['Rank'] + s.check_box['essential'] + s.checkbox_group.value
s.table['Rank'] = list(range(1, len(s.table) + 1))
with gr.Row():
s.model_name = gr.Textbox(value='Input the Model Name (fuzzy)', label='Model Name')
s.model_size = gr.CheckboxGroup(choices=MODEL_SIZE, value=MODEL_SIZE, label='Model Size')
s.model_type = gr.CheckboxGroup(choices=MODEL_TYPE, value=MODEL_TYPE, label='Model Type')
s.data_component = gr.components.DataFrame(value=s.table[s.headers], datatype=[s.type_map[x] for x in s.headers])
s.dataset = gr.Textbox(value=dataset, label=dataset, visible=False)
def filter_df_l2(dataset_name, fields, model_name, model_size, model_type, circular):
results = load_results()['results']
s = structs[DATASETS.index(dataset_name)]
headers = ['Rank'] + s.check_box['essential'] + fields
circ_flag = 'CircularEval' in circular
if circ_flag and dataset_name in NON_MCQ_DATASETS:
circ_flag = False
df, _ = BUILD_L2_DF(results, dataset_name, circular=circ_flag)
df['flag'] = [model_size_flag(x, model_size) for x in df['Param (B)']]
df = df[df['flag']]
df.pop('flag')
if len(df):
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
df = df[df['flag']]
df.pop('flag')
df['Rank'] = list(range(1, len(df) + 1))
default_val = 'Input the Model Name (fuzzy)'
if model_name != default_val:
method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in df['Method']]
flag = [model_name.lower() in name for name in method_names]
df['TEMP'] = flag
df = df[df['TEMP'] == True]
df.pop('TEMP')
comp = gr.components.DataFrame(value=df[headers], datatype=[s.type_map[x] for x in headers])
return comp
for cbox in [s.checkbox_group, s.model_size, s.model_type, s.circular]:
cbox.change(
fn=filter_df_l2,
inputs=[s.dataset, s.checkbox_group, s.model_name, s.model_size, s.model_type, s.circular],
outputs=s.data_component)
s.model_name.submit(
fn=filter_df_l2,
inputs=[s.dataset, s.checkbox_group, s.model_name, s.model_size, s.model_type, s.circular],
outputs=s.data_component)
with gr.Blocks(title="Spatial Leaderboard", head=head_style) as demo:
results = load_results()['results']
N_MODEL = len(results)
DATASETS = []
for m in results:
DATASETS.extend(results[m].keys())
DATASETS = [d for d in set(DATASETS) if d != 'META' and 'circular' not in d]
N_DATA = len(DATASETS)
structs = [abc.abstractproperty() for _ in range(N_DATA)]
gr.Markdown(LEADERBORAD_INTRODUCTION)
with gr.Tabs(elem_classes='tab-buttons') as tabs:
with gr.TabItem('π
LMM Spatial Leaderboard', elem_id='main', id=0):
math_main_tab(results)
for i, dataset in enumerate(DATASETS):
with gr.TabItem(
f'π {dataset}', elem_id=dataset, id=i + 2):
dataset_tab(results, structs[i], dataset)
with gr.Row():
with gr.Accordion('Citation', open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id='citation-button')
if __name__ == '__main__':
demo.launch(server_name='0.0.0.0')
|