import cv2 as cv import numpy as np import gradio as gr from huggingface_hub import hf_hub_download from yunet import YuNet from ediffiqa import eDifFIQA # Download face detection model (YuNet) model_path_yunet = hf_hub_download( repo_id="opencv/face_detection_yunet", filename="face_detection_yunet_2023mar.onnx" ) # Download face quality assessment model (eDifFIQA Tiny) model_path_quality = hf_hub_download( repo_id="opencv/face_image_quality_assessment_ediffiqa", filename="ediffiqa_tiny_jun2024.onnx" ) # Backend and target backend_id = cv.dnn.DNN_BACKEND_OPENCV target_id = cv.dnn.DNN_TARGET_CPU # Initialize YuNet for face detection face_detector = YuNet( modelPath=model_path_yunet, inputSize=[320, 320], confThreshold=0.9, nmsThreshold=0.3, topK=5000, backendId=backend_id, targetId=target_id ) # Initialize eDifFIQA for quality assessment quality_model = eDifFIQA( modelPath=model_path_quality, inputSize=[112, 112] ) quality_model.setBackendAndTarget( backendId=backend_id, targetId=target_id ) REFERENCE_FACIAL_POINTS = np.array([ [38.2946 , 51.6963 ], [73.5318 , 51.5014 ], [56.0252 , 71.7366 ], [41.5493 , 92.3655 ], [70.729904, 92.2041 ] ], dtype=np.float32) def align_image(image, detection_data): src_pts = np.float32(detection_data[0][4:-1]).reshape(5, 2) tfm, _ = cv.estimateAffinePartial2D(src_pts, REFERENCE_FACIAL_POINTS, method=cv.LMEDS) face_img = cv.warpAffine(image, tfm, (112, 112)) return face_img def assess_face_quality(input_image): bgr_image = cv.cvtColor(input_image, cv.COLOR_RGB2BGR) h, w, _ = bgr_image.shape face_detector.setInputSize([w, h]) detections = face_detector.infer(bgr_image) if detections is None or len(detections) == 0: return "No face detected.", input_image aligned_face = align_image(bgr_image, detections) score = np.squeeze(quality_model.infer(aligned_face)).item() output_image = aligned_face.copy() cv.putText(output_image, f"{score:.3f}", (0, 20), cv.FONT_HERSHEY_DUPLEX, 0.8, (0, 0, 255), 2) output_image = cv.cvtColor(output_image, cv.COLOR_BGR2RGB) return f"Quality Score: {score:.3f}", output_image # Gradio Interface with gr.Blocks(css='''.example * { font-style: italic; font-size: 18px !important; color: #0ea5e9 !important; }''') as demo: gr.Markdown("### Face Image Quality Assessment (eDifFIQA + YuNet)") gr.Markdown("Upload a face image. The app detects and aligns the face, then evaluates image quality using the eDifFIQA model.") with gr.Row(): input_image = gr.Image(type="numpy", label="Upload Face Image") with gr.Column(): quality_score = gr.Text(label="Quality Score") aligned_face = gr.Image(type="numpy", label="Aligned Face with Score") # Clear output when new image is uploaded input_image.change(fn=lambda: ("", None), outputs=[quality_score, aligned_face]) with gr.Row(): submit_btn = gr.Button("Submit", variant="primary") clear_btn = gr.Button("Clear") submit_btn.click(fn=assess_face_quality, inputs=input_image, outputs=[quality_score, aligned_face]) clear_btn.click(fn=lambda: (None, "", None), outputs=[input_image, quality_score, aligned_face]) gr.Markdown("Click on any example to try it.", elem_classes=["example"]) gr.Examples( examples=[ ["examples/lena.jpg"], ["examples/gray_face.png"] ], inputs=input_image ) if __name__ == "__main__": demo.launch()