facial_expression_recognition / facial_fer_model.py
Abhishek Gola
Added facial expression recognition to opencv spaces
a58bc70
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
#
# Copyright (C) 2022, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
# Third party copyrights are property of their respective owners.
import numpy as np
import cv2 as cv
class FacialExpressionRecog:
def __init__(self, modelPath, backendId=0, targetId=0):
self._modelPath = modelPath
self._backendId = backendId
self._targetId = targetId
self._model = cv.dnn.readNet(self._modelPath)
self._model.setPreferableBackend(self._backendId)
self._model.setPreferableTarget(self._targetId)
self._align_model = FaceAlignment()
self._inputNames = 'data'
self._outputNames = ['label']
self._inputSize = [112, 112]
self._mean = np.array([0.5, 0.5, 0.5])[np.newaxis, np.newaxis, :]
self._std = np.array([0.5, 0.5, 0.5])[np.newaxis, np.newaxis, :]
@property
def name(self):
return self.__class__.__name__
def setBackendAndTarget(self, backendId, targetId):
self._backendId = backendId
self._targetId = targetId
self._model.setPreferableBackend(self._backendId)
self._model.setPreferableTarget(self._targetId)
def _preprocess(self, image, bbox):
if bbox is not None:
image = self._align_model.get_align_image(image, bbox[4:].reshape(-1, 2))
image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
image = image.astype(np.float32, copy=False) / 255.0
image -= self._mean
image /= self._std
return cv.dnn.blobFromImage(image)
def infer(self, image, bbox=None):
# Preprocess
inputBlob = self._preprocess(image, bbox)
# Forward
self._model.setInput(inputBlob, self._inputNames)
outputBlob = self._model.forward(self._outputNames)
# Postprocess
results = self._postprocess(outputBlob)
return results
def _postprocess(self, outputBlob):
result = np.argmax(outputBlob[0], axis=1).astype(np.uint8)
return result
@staticmethod
def getDesc(ind):
_expression_enum = ["angry", "disgust", "fearful", "happy", "neutral", "sad", "surprised"]
return _expression_enum[ind]
class FaceAlignment():
def __init__(self, reflective=False):
self._std_points = np.array([[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], [41.5493, 92.3655], [70.7299, 92.2041]])
self.reflective = reflective
def __tformfwd(self, trans, uv):
uv = np.hstack((uv, np.ones((uv.shape[0], 1))))
xy = np.dot(uv, trans)
xy = xy[:, 0:-1]
return xy
def __tforminv(self, trans, uv):
Tinv = np.linalg.inv(trans)
xy = self.__tformfwd(Tinv, uv)
return xy
def __findNonreflectiveSimilarity(self, uv, xy, options=None):
options = {"K": 2}
K = options["K"]
M = xy.shape[0]
x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
# print '--->x, y:\n', x, y
tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1))))
tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
X = np.vstack((tmp1, tmp2))
# print '--->X.shape: ', X.shape
# print 'X:\n', X
u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
U = np.vstack((u, v))
# print '--->U.shape: ', U.shape
# print 'U:\n', U
# We know that X * r = U
if np.linalg.matrix_rank(X) >= 2 * K:
r, _, _, _ = np.linalg.lstsq(X, U, rcond=-1)
# print(r, X, U, sep="\n")
r = np.squeeze(r)
else:
raise Exception("cp2tform:twoUniquePointsReq")
sc = r[0]
ss = r[1]
tx = r[2]
ty = r[3]
Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]])
T = np.linalg.inv(Tinv)
T[:, 2] = np.array([0, 0, 1])
return T, Tinv
def __findSimilarity(self, uv, xy, options=None):
options = {"K": 2}
# uv = np.array(uv)
# xy = np.array(xy)
# Solve for trans1
trans1, trans1_inv = self.__findNonreflectiveSimilarity(uv, xy, options)
# manually reflect the xy data across the Y-axis
xyR = xy
xyR[:, 0] = -1 * xyR[:, 0]
# Solve for trans2
trans2r, trans2r_inv = self.__findNonreflectiveSimilarity(uv, xyR, options)
# manually reflect the tform to undo the reflection done on xyR
TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]])
trans2 = np.dot(trans2r, TreflectY)
# Figure out if trans1 or trans2 is better
xy1 = self.__tformfwd(trans1, uv)
norm1 = np.linalg.norm(xy1 - xy)
xy2 = self.__tformfwd(trans2, uv)
norm2 = np.linalg.norm(xy2 - xy)
if norm1 <= norm2:
return trans1, trans1_inv
else:
trans2_inv = np.linalg.inv(trans2)
return trans2, trans2_inv
def __get_similarity_transform(self, src_pts, dst_pts):
if self.reflective:
trans, trans_inv = self.__findSimilarity(src_pts, dst_pts)
else:
trans, trans_inv = self.__findNonreflectiveSimilarity(src_pts, dst_pts)
return trans, trans_inv
def __cvt_tform_mat_for_cv2(self, trans):
cv2_trans = trans[:, 0:2].T
return cv2_trans
def get_similarity_transform_for_cv2(self, src_pts, dst_pts):
trans, trans_inv = self.__get_similarity_transform(src_pts, dst_pts)
cv2_trans = self.__cvt_tform_mat_for_cv2(trans)
return cv2_trans, trans
def get_align_image(self, image, lm5_points):
assert lm5_points is not None
tfm, trans = self.get_similarity_transform_for_cv2(lm5_points, self._std_points)
return cv.warpAffine(image, tfm, (112, 112))