import cv2 as cv import numpy as np import gradio as gr import datetime from huggingface_hub import hf_hub_download from facial_fer_model import FacialExpressionRecog from yunet import YuNet # Download ONNX model from Hugging Face FD_MODEL_PATH = hf_hub_download(repo_id="opencv/face_detection_yunet", filename="face_detection_yunet_2023mar.onnx") FER_MODEL_PATH = hf_hub_download(repo_id="opencv/facial_expression_recognition", filename="facial_expression_recognition_mobilefacenet_2022july.onnx") backend_id = cv.dnn.DNN_BACKEND_OPENCV target_id = cv.dnn.DNN_TARGET_CPU fer_model = FacialExpressionRecog(modelPath=FER_MODEL_PATH, backendId=backend_id, targetId=target_id) detect_model = YuNet(modelPath=FD_MODEL_PATH) def visualize(image, det_res, fer_res): output = image.copy() landmark_color = [(255, 0, 0), (0, 0, 255), (0, 255, 0), (255, 0, 255), (0, 255, 255)] for det, fer_type in zip(det_res, fer_res): bbox = det[0:4].astype(np.int32) fer_type_str = FacialExpressionRecog.getDesc(fer_type) cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (0, 255, 0), 2) cv.putText(output, fer_type_str, (bbox[0], bbox[1] - 10), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1) landmarks = det[4:14].astype(np.int32).reshape((5, 2)) for idx, landmark in enumerate(landmarks): cv.circle(output, landmark, 2, landmark_color[idx], 2) return output def detect_expression(input_image): image = cv.cvtColor(input_image, cv.COLOR_RGB2BGR) h, w, _ = image.shape detect_model.setInputSize([w, h]) dets = detect_model.infer(image) if dets is None: return cv.cvtColor(image, cv.COLOR_BGR2RGB) fer_res = [] for face_points in dets: result = fer_model.infer(image, face_points[:-1]) fer_res.append(result[0]) output = visualize(image, dets, fer_res) return cv.cvtColor(output, cv.COLOR_BGR2RGB) # Gradio Interface with gr.Blocks(css='''.example * { font-style: italic; font-size: 18px !important; color: #0ea5e9 !important; }''') as demo: gr.Markdown("### Facial Expression Recognition (FER) with OpenCV DNN") gr.Markdown("Detects faces and recognizes facial expressions using YuNet + MobileFaceNet ONNX models.") with gr.Row(): input_image = gr.Image(type="numpy", label="Upload Image") output_image = gr.Image(type="numpy", label="Facial Expression Result") # Clear output when new image is uploaded input_image.change(fn=lambda: (None), outputs=output_image) with gr.Row(): submit_btn = gr.Button("Submit", variant="primary") clear_btn = gr.Button("Clear") submit_btn.click(fn=detect_expression, inputs=input_image, outputs=output_image) clear_btn.click(fn=lambda:(None, None), outputs=[input_image, output_image]) gr.Markdown("Click on any example to try it.", elem_classes=["example"]) gr.Examples( examples=[ ["examples/lena.jpg"], ["examples/gray_face.png"] ], inputs=input_image ) if __name__ == "__main__": demo.launch()