import numpy as np import cv2 class YoloX: def __init__(self, modelPath, confThreshold=0.35, nmsThreshold=0.5, objThreshold=0.5, backendId=0, targetId=0): self.num_classes = 80 self.net = cv2.dnn.readNet(modelPath) self.input_size = (640, 640) self.mean = np.array([0.485, 0.456, 0.406], dtype=np.float32).reshape(1, 1, 3) self.std = np.array([0.229, 0.224, 0.225], dtype=np.float32).reshape(1, 1, 3) self.strides = [8, 16, 32] self.confThreshold = confThreshold self.nmsThreshold = nmsThreshold self.objThreshold = objThreshold self.backendId = backendId self.targetId = targetId self.net.setPreferableBackend(self.backendId) self.net.setPreferableTarget(self.targetId) self.generateAnchors() @property def name(self): return self.__class__.__name__ def setBackendAndTarget(self, backendId, targetId): self.backendId = backendId self.targetId = targetId self.net.setPreferableBackend(self.backendId) self.net.setPreferableTarget(self.targetId) def preprocess(self, img): blob = np.transpose(img, (2, 0, 1)) return blob[np.newaxis, :, :, :] def infer(self, srcimg): input_blob = self.preprocess(srcimg) self.net.setInput(input_blob) outs = self.net.forward(self.net.getUnconnectedOutLayersNames()) predictions = self.postprocess(outs[0]) return predictions def postprocess(self, outputs): dets = outputs[0] dets[:, :2] = (dets[:, :2] + self.grids) * self.expanded_strides dets[:, 2:4] = np.exp(dets[:, 2:4]) * self.expanded_strides # get boxes boxes = dets[:, :4] boxes_xyxy = np.ones_like(boxes) boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2. boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2. boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2. boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2. # get scores and class indices scores = dets[:, 4:5] * dets[:, 5:] max_scores = np.amax(scores, axis=1) max_scores_idx = np.argmax(scores, axis=1) keep = cv2.dnn.NMSBoxesBatched(boxes_xyxy.tolist(), max_scores.tolist(), max_scores_idx.tolist(), self.confThreshold, self.nmsThreshold) candidates = np.concatenate([boxes_xyxy, max_scores[:, None], max_scores_idx[:, None]], axis=1) if len(keep) == 0: return np.array([]) return candidates[keep] def generateAnchors(self): self.grids = [] self.expanded_strides = [] hsizes = [self.input_size[0] // stride for stride in self.strides] wsizes = [self.input_size[1] // stride for stride in self.strides] for hsize, wsize, stride in zip(hsizes, wsizes, self.strides): xv, yv = np.meshgrid(np.arange(hsize), np.arange(wsize)) grid = np.stack((xv, yv), 2).reshape(1, -1, 2) self.grids.append(grid) shape = grid.shape[:2] self.expanded_strides.append(np.full((*shape, 1), stride)) self.grids = np.concatenate(self.grids, 1) self.expanded_strides = np.concatenate(self.expanded_strides, 1)