File size: 7,708 Bytes
8e56712 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import graphviz
import json
from tempfile import NamedTemporaryFile
import os
def generate_process_flow_diagram(json_input: str, output_format: str) -> str:
"""
Generates a Process Flow Diagram (Flowchart) from JSON input.
Args:
json_input (str): A JSON string describing the process flow structure.
It must follow the Expected JSON Format Example below.
Expected JSON Format Example:
{
"start_node": "Start Inference Request",
"nodes": [
{
"id": "user_input",
"label": "Receive User Input (Data)",
"type": "io"
},
{
"id": "preprocess_data",
"label": "Preprocess Data",
"type": "process"
},
{
"id": "validate_data",
"label": "Validate Data Format/Type",
"type": "decision"
},
{
"id": "data_valid_yes",
"label": "Data Valid?",
"type": "decision"
},
{
"id": "load_model",
"label": "Load AI Model (if not cached)",
"type": "process"
},
{
"id": "run_inference",
"label": "Run AI Model Inference",
"type": "process"
},
{
"id": "postprocess_output",
"label": "Postprocess Model Output",
"type": "process"
},
{
"id": "send_response",
"label": "Send Response to User",
"type": "io"
},
{
"id": "log_error",
"label": "Log Error & Notify User",
"type": "process"
},
{
"id": "end_inference_process",
"label": "End Inference Process",
"type": "end"
}
],
"connections": [
{"from": "start_node", "to": "user_input", "label": "Request"},
{"from": "user_input", "to": "preprocess_data", "label": "Data Received"},
{"from": "preprocess_data", "to": "validate_data", "label": "Cleaned"},
{"from": "validate_data", "to": "data_valid_yes", "label": "Check"},
{"from": "data_valid_yes", "to": "load_model", "label": "Yes"},
{"from": "data_valid_yes", "to": "log_error", "label": "No"},
{"from": "load_model", "to": "run_inference", "label": "Model Ready"},
{"from": "run_inference", "to": "postprocess_output", "label": "Output Generated"},
{"from": "postprocess_output", "to": "send_response", "label": "Ready"},
{"from": "send_response", "to": "end_inference_process", "label": "Response Sent"},
{"from": "log_error", "to": "end_inference_process", "label": "Error Handled"}
]
}
Returns:
str: The filepath to the generated PNG image file.
"""
try:
if not json_input.strip():
return "Error: Empty input"
data = json.loads(json_input)
# Validate required top-level keys for a flowchart
if 'start_node' not in data or 'nodes' not in data or 'connections' not in data:
raise ValueError("Missing required fields: 'start_node', 'nodes', or 'connections'")
# Define specific node shapes for flowchart types
node_shapes = {
"process": "box", # Rectangle for processes
"decision": "diamond", # Diamond for decisions
"start": "oval", # Oval for start
"end": "oval", # Oval for end
"io": "parallelogram", # Input/Output
"document": "note", # Document symbol
"default": "box" # Fallback
}
# ํ๊ธ ํฐํธ ์ค์
# GDFONTPATH๊ฐ ์ค์ ๋์ด ์์ผ๋ฉด ํฐํธ ํ์ผ๋ช
(ํ์ฅ์ ์ ์ธ) ์ฌ์ฉ
korean_font = 'NanumGothic-Regular'
dot = graphviz.Digraph(
name='ProcessFlowDiagram',
format='png',
graph_attr={
'rankdir': 'TB', # Top-to-Bottom flow is common for flowcharts
'splines': 'ortho', # Straight lines with 90-degree bends
'bgcolor': 'white', # White background
'pad': '0.5', # Padding around the graph
'nodesep': '0.6', # Spacing between nodes on same rank
'ranksep': '0.8', # Spacing between ranks
'fontname': korean_font, # ๊ทธ๋ํ ์ ์ฒด ํ๊ธ ํฐํธ
'charset': 'UTF-8' # UTF-8 ์ธ์ฝ๋ฉ
},
node_attr={
'fontname': korean_font # ๋ชจ๋ ๋
ธ๋์ ๊ธฐ๋ณธ ํฐํธ
},
edge_attr={
'fontname': korean_font # ๋ชจ๋ ์ฃ์ง์ ๊ธฐ๋ณธ ํฐํธ
}
)
base_color = '#19191a' # Hardcoded base color
fill_color_for_nodes = base_color
font_color_for_nodes = 'white' if base_color == '#19191a' or base_color.lower() in ['#000000', '#19191a'] else 'black'
# Store all nodes by ID for easy lookup
all_defined_nodes = {node['id']: node for node in data['nodes']}
# Add start node explicitly
start_node_id = data['start_node']
dot.node(
start_node_id,
start_node_id, # Label is typically the ID itself for start/end
shape=node_shapes['start'],
style='filled,rounded',
fillcolor='#2196F3', # A distinct blue for Start
fontcolor='white',
fontsize='14',
fontname=korean_font # ํ๊ธ ํฐํธ ์ถ๊ฐ
)
# Add all other nodes (process, decision, etc.)
for node_id, node_info in all_defined_nodes.items():
if node_id == start_node_id: # Skip if it's the start node, already added
continue
node_type = node_info.get("type", "default")
shape = node_shapes.get(node_type, "box")
node_label = node_info['label']
# Use distinct color for end node if it exists
if node_type == 'end':
dot.node(
node_id,
node_label,
shape=shape,
style='filled,rounded',
fillcolor='#F44336', # A distinct red for End
fontcolor='white',
fontsize='14',
fontname=korean_font # ํ๊ธ ํฐํธ ์ถ๊ฐ
)
else: # Regular process, decision, etc. nodes use the selected base color
dot.node(
node_id,
node_label,
shape=shape,
style='filled,rounded',
fillcolor=fill_color_for_nodes,
fontcolor=font_color_for_nodes,
fontsize='14',
fontname=korean_font # ํ๊ธ ํฐํธ ์ถ๊ฐ
)
# Add connections (edges)
for connection in data['connections']:
dot.edge(
connection['from'],
connection['to'],
label=connection.get('label', ''),
color='#4a4a4a', # Dark gray for lines
fontcolor='#4a4a4a',
fontsize='10',
fontname=korean_font # ํ๊ธ ํฐํธ ์ถ๊ฐ
)
with NamedTemporaryFile(delete=False, suffix=f'.{output_format}') as tmp:
dot.render(tmp.name, format=output_format, cleanup=True)
return f"{tmp.name}.{output_format}"
except json.JSONDecodeError:
return "Error: Invalid JSON format"
except Exception as e:
return f"Error: {str(e)}" |