File size: 78,638 Bytes
f193ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6947b37
f193ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
d133b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d89b45f
 
 
 
 
 
 
 
 
 
 
f193ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d133b32
f193ae3
 
 
 
 
 
 
 
 
 
 
 
 
d133b32
f193ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d133b32
f193ae3
 
 
 
 
 
 
 
 
 
 
 
 
d133b32
f193ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d133b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c006f3
d133b32
0c006f3
d133b32
 
 
 
 
0c006f3
d133b32
0c006f3
d133b32
0c006f3
 
 
d133b32
0c006f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d133b32
 
 
 
0c006f3
d133b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c006f3
d133b32
 
 
43c5c15
0c006f3
 
 
 
 
 
 
 
 
 
d133b32
43c5c15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d133b32
43c5c15
 
 
 
0c006f3
 
 
 
 
43c5c15
 
0c006f3
 
43c5c15
 
0c006f3
 
43c5c15
 
0c006f3
 
43c5c15
 
 
 
 
 
 
0c006f3
43c5c15
0c006f3
 
d133b32
43c5c15
0c006f3
 
43c5c15
0c006f3
43c5c15
 
 
d133b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c006f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f193ae3
d133b32
f193ae3
d133b32
f193ae3
 
d133b32
f193ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d133b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f193ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d89b45f
 
 
678e38d
d89b45f
f193ae3
678e38d
 
 
 
 
 
 
 
 
 
 
f193ae3
 
 
 
 
 
 
 
 
 
 
 
d133b32
 
 
 
 
 
 
 
 
 
 
 
 
 
f193ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43c5c15
d133b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43c5c15
d133b32
 
43c5c15
 
 
 
d133b32
43c5c15
0c006f3
43c5c15
d133b32
 
43c5c15
d133b32
 
 
 
43c5c15
d133b32
43c5c15
 
 
 
 
 
d133b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d89b45f
6947b37
d89b45f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6947b37
d89b45f
 
6947b37
d89b45f
 
 
 
 
6947b37
d89b45f
 
 
 
6947b37
d89b45f
 
 
 
 
6947b37
 
d89b45f
 
6947b37
d89b45f
6947b37
d89b45f
 
 
 
 
f193ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d133b32
 
 
 
 
 
 
 
 
f193ae3
 
 
 
 
 
 
 
 
 
d133b32
 
 
 
 
 
 
 
 
f193ae3
 
 
 
 
 
 
 
 
 
 
 
 
d133b32
 
 
 
 
 
 
 
 
 
 
 
 
f193ae3
 
 
 
 
 
 
 
 
 
 
 
 
d133b32
 
 
 
 
 
 
 
 
f193ae3
 
 
 
 
 
 
 
 
 
d133b32
 
 
 
 
 
 
 
 
f193ae3
 
 
 
 
 
 
 
 
 
 
 
 
d133b32
 
 
 
 
 
 
 
 
 
 
 
 
f193ae3
 
 
d133b32
f193ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d133b32
 
f193ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c006f3
f193ae3
0c006f3
f193ae3
 
0c006f3
 
 
 
 
 
f193ae3
0c006f3
 
 
f193ae3
0c006f3
f193ae3
 
0c006f3
 
 
f193ae3
 
 
 
 
 
 
 
 
 
0c006f3
 
 
 
 
 
 
 
 
 
 
f193ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d133b32
f193ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d133b32
f193ae3
d133b32
f193ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27027aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f193ae3
 
 
 
 
 
 
27027aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c006f3
27027aa
 
 
 
 
 
0c006f3
 
 
 
 
27027aa
0c006f3
27027aa
0c006f3
 
 
 
 
 
 
 
27027aa
 
 
 
 
 
f193ae3
 
 
 
 
 
 
 
 
27027aa
0c006f3
 
 
27027aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f193ae3
 
 
0c006f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d133b32
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
import gradio as gr
import os
import json
import random
from datetime import datetime
import pandas as pd
from typing import Dict, List, Tuple, Optional, Generator
import sqlite3
from dataclasses import dataclass, asdict
import hashlib
import time
from enum import Enum
import numpy as np
import threading
import queue
import re

# For LLM API integration
try:
    from openai import OpenAI
except ImportError:
    print("OpenAI library not installed. Install with: pip install openai")
    OpenAI = None

try:
    from gradio_client import Client as GradioClient
except ImportError:
    print("Gradio client not installed. Install with: pip install gradio_client")
    GradioClient = None

# For Gemini API
try:
    from google import genai
    from google.genai import types
except ImportError:
    print("Google GenAI library not installed. Install with: pip install google-genai")
    genai = None
    types = None

# For Claude API
try:
    import anthropic
except ImportError:
    print("Anthropic library not installed. Install with: pip install anthropic")
    anthropic = None

# For Hugging Face Dataset integration
try:
    from huggingface_hub import HfApi, login, create_repo, upload_file, hf_hub_download
    from datasets import Dataset, load_dataset
    import pyarrow.parquet as pq
    import pyarrow as pa
except ImportError:
    print("Hugging Face libraries not installed. Install with: pip install huggingface_hub datasets pyarrow")
    HfApi = None
    Dataset = None

# ==================== Configuration ====================
class Category(Enum):
    STORYTELLING = "storytelling"
    INNOVATION = "innovation"
    BUSINESS = "business"

@dataclass
class Battle:
    id: str
    prompt_id: str
    prompt_text: str
    model_a: str
    model_b: str
    response_a: str
    response_b: str
    winner: Optional[str]
    voter_id: str
    timestamp: datetime
    category: Category
    custom_prompt: bool = False
    language: str = "en"

# ==================== Language Configurations ====================
LANGUAGES = {
    "en": "English",
    "ko": "ํ•œ๊ตญ์–ด"
}

UI_TEXT = {
    "en": {
        "title": "๐ŸŽจ AI Models Creativity Battle Arena",
        "subtitle": "Test cutting-edge AI models in creative challenges",
        "battle_tab": "โš”๏ธ Battle Arena",
        "leaderboard_tab": "๐Ÿ† Leaderboard",
        "category_label": "Select Category",
        "custom_prompt_label": "โœ๏ธ Custom Challenge (Optional)",
        "custom_prompt_placeholder": "Enter your creative challenge for the models...",
        "new_battle_btn": "๐ŸŽฒ Start New Battle",
        "model_a": "### ๐Ÿ…ฐ๏ธ Model A",
        "model_b": "### ๐Ÿ…ฑ๏ธ Model B",
        "vote_a": "๐Ÿ…ฐ๏ธ Model A is more creative",
        "vote_b": "๐Ÿ…ฑ๏ธ Model B is more creative",
        "vote_complete": "### ๐ŸŽ‰ Vote Complete!",
        "winner": "Winner",
        "leaderboard_title": "## ๐Ÿ† AI Models Leaderboard",
        "category_filter": "Category Filter",
        "refresh_btn": "๐Ÿ”„ Refresh",
        "language_label": "Language",
        "contact": "Contact: arxivgpt@gmail.com",
        "challenge_task": "### ๐Ÿ“ Challenge Task",
        "category": "Category",
        "prompt": "Challenge",
        "model_identity": "Model Identity",
        "elo_updated": "Scores have been updated!",
        "generating": "๐Ÿ”„ Generating response...",
        "categories": {
            "random": "๐ŸŽฒ Random",
            "storytelling": "๐Ÿ“š Storytelling",
            "innovation": "๐Ÿ’ก Innovation",
            "business": "๐Ÿ’ผ Business"
        },
        "filter_categories": {
            "overall": "Overall",
            "storytelling": "Storytelling",
            "innovation": "Innovation",
            "business": "Business"
        }
    },
    "ko": {
        "title": "๐ŸŽจ AI ๋ชจ๋ธ ์ฐฝ์˜์„ฑ ๋ฐฐํ‹€ ์•„๋ ˆ๋‚˜",
        "subtitle": "์ตœ์ฒจ๋‹จ AI ๋ชจ๋ธ๋“ค์˜ ์ฐฝ์˜๋ ฅ ๋Œ€๊ฒฐ",
        "battle_tab": "โš”๏ธ ๋ฐฐํ‹€ ์•„๋ ˆ๋‚˜",
        "leaderboard_tab": "๐Ÿ† ๋ฆฌ๋”๋ณด๋“œ",
        "category_label": "์นดํ…Œ๊ณ ๋ฆฌ ์„ ํƒ",
        "custom_prompt_label": "โœ๏ธ ์ปค์Šคํ…€ ๋„์ „๊ณผ์ œ (์„ ํƒ์‚ฌํ•ญ)",
        "custom_prompt_placeholder": "๋ชจ๋ธ๋“ค์—๊ฒŒ ๋„์ „ํ•  ์ฐฝ์˜์ ์ธ ๊ณผ์ œ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”...",
        "new_battle_btn": "๐ŸŽฒ ์ƒˆ๋กœ์šด ๋ฐฐํ‹€ ์‹œ์ž‘",
        "model_a": "### ๐Ÿ…ฐ๏ธ ๋ชจ๋ธ A",
        "model_b": "### ๐Ÿ…ฑ๏ธ ๋ชจ๋ธ B",
        "vote_a": "๐Ÿ…ฐ๏ธ ๋ชจ๋ธ A๊ฐ€ ๋” ์ฐฝ์˜์ ์ด๋‹ค",
        "vote_b": "๐Ÿ…ฑ๏ธ ๋ชจ๋ธ B๊ฐ€ ๋” ์ฐฝ์˜์ ์ด๋‹ค",
        "vote_complete": "### ๐ŸŽ‰ ํˆฌํ‘œ ์™„๋ฃŒ!",
        "winner": "์Šน์ž",
        "leaderboard_title": "## ๐Ÿ† AI ๋ชจ๋ธ ๋ฆฌ๋”๋ณด๋“œ",
        "category_filter": "์นดํ…Œ๊ณ ๋ฆฌ ํ•„ํ„ฐ",
        "refresh_btn": "๐Ÿ”„ ์ƒˆ๋กœ๊ณ ์นจ",
        "language_label": "์–ธ์–ด",
        "contact": "๋ฌธ์˜: arxivgpt@gmail.com",
        "challenge_task": "### ๐Ÿ“ ๋„์ „ ๊ณผ์ œ",
        "category": "์นดํ…Œ๊ณ ๋ฆฌ",
        "prompt": "๋„์ „๊ณผ์ œ",
        "model_identity": "๋ชจ๋ธ ์ •์ฒด",
        "elo_updated": "์ ์ˆ˜๊ฐ€ ์—…๋ฐ์ดํŠธ๋˜์—ˆ์Šต๋‹ˆ๋‹ค!",
        "generating": "๐Ÿ”„ ์‘๋‹ต ์ƒ์„ฑ ์ค‘...",
        "categories": {
            "random": "๐ŸŽฒ ๋žœ๋ค",
            "storytelling": "๐Ÿ“š ์Šคํ† ๋ฆฌํ…”๋ง",
            "innovation": "๐Ÿ’ก ํ˜์‹ /๋ฐœ๋ช…",
            "business": "๐Ÿ’ผ ๋น„์ฆˆ๋‹ˆ์Šค"
        },
        "filter_categories": {
            "overall": "์ „์ฒด",
            "storytelling": "์Šคํ† ๋ฆฌํ…”๋ง",
            "innovation": "ํ˜์‹ /๋ฐœ๋ช…",
            "business": "๋น„์ฆˆ๋‹ˆ์Šค"
        }
    }
}

# ==================== Simplified Prompt Database ====================
PROMPTS = {
    Category.STORYTELLING: {
        "en": [
            {"text": "Write a sci-fi movie proposal with a never-before-explored concept", "difficulty": "high"},
            {"text": "Create a story where the protagonists never meet but fall deeply in love", "difficulty": "high"},
            {"text": "Design a thriller where the twist is revealed in the first scene but still surprises at the end", "difficulty": "high"}
        ],
        "ko": [
            {"text": "ํ•œ ๋ฒˆ๋„ ๋‹ค๋ค„์ง€์ง€ ์•Š์€ ์†Œ์žฌ๋กœ SF ์˜ํ™” ๊ธฐํš์•ˆ์„ ์ž‘์„ฑํ•˜์„ธ์š”", "difficulty": "high"},
            {"text": "์ฃผ์ธ๊ณต๋“ค์ด ํ•œ ๋ฒˆ๋„ ๋งŒ๋‚˜์ง€ ์•Š์ง€๋งŒ ๊นŠ์€ ์‚ฌ๋ž‘์— ๋น ์ง€๋Š” ์Šคํ† ๋ฆฌ๋ฅผ ์ฐฝ์ž‘ํ•˜์„ธ์š”", "difficulty": "high"},
            {"text": "์ฒซ ์žฅ๋ฉด์—์„œ ๋ฐ˜์ „์„ ๊ณต๊ฐœํ•˜์ง€๋งŒ ๋งˆ์ง€๋ง‰์— ์—ฌ์ „ํžˆ ์ถฉ๊ฒฉ์ ์ธ ์Šค๋ฆด๋Ÿฌ๋ฅผ ์„ค๊ณ„ํ•˜์„ธ์š”", "difficulty": "high"}
        ]
    },
    Category.INNOVATION: {
        "en": [
            {"text": "Present 5 innovative ideas that could revolutionize the bicycle", "difficulty": "high"},
            {"text": "Propose 5 breakthrough innovations that could transform email communication", "difficulty": "high"},
            {"text": "Design 5 inventions that could make elevators obsolete", "difficulty": "high"}
        ],
        "ko": [
            {"text": "์ž์ „๊ฑฐ๋ฅผ ํ˜์‹ ํ•  ์ˆ˜ ์žˆ๋Š” ํš๊ธฐ์ ์ธ ๋ฐœ๋ช… ์•„์ด๋””์–ด๋ฅผ 5๊ฐœ ์ œ์‹œํ•˜์„ธ์š”", "difficulty": "high"},
            {"text": "์ด๋ฉ”์ผ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์„ ์™„์ „ํžˆ ๋ณ€ํ™”์‹œํ‚ฌ ํ˜์‹  ์•„์ด๋””์–ด๋ฅผ 5๊ฐœ ์ œ์‹œํ•˜์„ธ์š”", "difficulty": "high"},
            {"text": "์—˜๋ฆฌ๋ฒ ์ดํ„ฐ๋ฅผ ๋Œ€์ฒดํ•  ์ˆ˜ ์žˆ๋Š” 5๊ฐ€์ง€ ํ˜์‹ ์  ๋ฐœ๋ช…์„ ์„ค๊ณ„ํ•˜์„ธ์š”", "difficulty": "high"}
        ]
    },
    Category.BUSINESS: {
        "en": [
            {"text": "Design a business model in robotics/drone sector that could become a unicorn startup", "difficulty": "high"},
            {"text": "Create a one-person SaaS business that could scale to $1M ARR", "difficulty": "high"},
            {"text": "Develop a subscription model that people would happily pay $1000/month for", "difficulty": "high"}
        ],
        "ko": [
            {"text": "๋กœ๋ด‡/๋“œ๋ก  ๋ถ„์•ผ์—์„œ ์œ ๋‹ˆ์ฝ˜ ๊ธฐ์—…์ด ๋  ์ˆ˜ ์žˆ๋Š” ๋น„์ฆˆ๋‹ˆ์Šค ๋ชจ๋ธ์„ ์„ค๊ณ„ํ•˜์„ธ์š”", "difficulty": "high"},
            {"text": "์—ฐ ๋งค์ถœ 10์–ต์›์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” 1์ธ SaaS ์ฐฝ์—… ์•„์ดํ…œ์„ ๊ธฐํšํ•˜์„ธ์š”", "difficulty": "high"},
            {"text": "์‚ฌ๋žŒ๋“ค์ด ๊ธฐ๊บผ์ด ์›” 100๋งŒ์›์„ ์ง€๋ถˆํ•  ๋งŒํ•œ ๊ตฌ๋… ๋น„์ฆˆ๋‹ˆ์Šค๋ฅผ ๊ฐœ๋ฐœํ•˜์„ธ์š”", "difficulty": "high"}
        ]
    }
}

# ==================== Database Management ====================
class ArenaDatabase:
    def __init__(self, db_path="ai_models_arena.db", use_hf=True):
        self.db_path = db_path
        self.use_hf = use_hf and HfApi is not None
        self.hf_token = os.getenv("HF_TOKEN")
        self.hf_dataset_name = os.getenv("HF_DATASET_NAME", "ai_models_arena")
        self.hf_username = None
        
        if self.use_hf and self.hf_token:
            try:
                login(token=self.hf_token)
                self.api = HfApi()
                user_info = self.api.whoami()
                self.hf_username = user_info["name"]
                self.hf_repo_id = f"{self.hf_username}/{self.hf_dataset_name}"
                
                # Create or access the dataset repository
                self._init_hf_dataset()
                print(f"โœ… Connected to Hugging Face Dataset: {self.hf_repo_id}")
                
                # โญ CRITICAL: Try to restore from HF FIRST
                if self._restore_from_hf():
                    print("โœ… Successfully restored data from Hugging Face Dataset")
                    return  # โญ EXIT HERE if data exists - DO NOT initialize new database
                else:
                    print("๐Ÿ“ No existing data in HF Dataset, will create new database")
                    
            except Exception as e:
                print(f"โŒ Failed to connect to Hugging Face: {e}")
                self.use_hf = False
        
        # โญ ONLY initialize new database if HF restore failed or HF not available
        print("๐Ÿ“ Initializing new local database")
        self.init_database()
    
    def _init_hf_dataset(self):
        """Initialize Hugging Face dataset repository"""
        try:
            # Try to create the repository (it will fail if it already exists)
            create_repo(
                repo_id=self.hf_repo_id,
                repo_type="dataset",
                private=True,
                exist_ok=True
            )
            print(f"โœ… HF Dataset repository ready: {self.hf_repo_id}")
        except Exception as e:
            print(f"Dataset repo creation note: {e}")
    
    def _restore_from_hf(self):
        """โญ NEW METHOD: Restore complete database from HF - returns True if successful"""
        try:
            print("๐Ÿ”„ Attempting to restore data from Hugging Face...")
            
            # Try to load battles data
            try:
                dataset = load_dataset(self.hf_repo_id, split="train", token=self.hf_token)
            except Exception as e:
                print(f"No existing battles data found: {e}")
                return False
            
            if not dataset or len(dataset) == 0:
                print("Dataset exists but is empty")
                return False
            
            print(f"Found {len(dataset)} battles in HF Dataset")
            
            # Create fresh local database with data from HF
            conn = sqlite3.connect(self.db_path)
            cursor = conn.cursor()
            
            # Create tables
            cursor.execute('''
                CREATE TABLE IF NOT EXISTS battles (
                    id TEXT PRIMARY KEY,
                    prompt_id TEXT,
                    prompt_text TEXT,
                    category TEXT,
                    model_a TEXT,
                    model_b TEXT,
                    response_a TEXT,
                    response_b TEXT,
                    winner TEXT,
                    voter_id TEXT,
                    timestamp DATETIME,
                    custom_prompt INTEGER DEFAULT 0,
                    language TEXT DEFAULT 'en'
                )
            ''')
            
            cursor.execute('''
                CREATE TABLE IF NOT EXISTS model_stats (
                    model_name TEXT PRIMARY KEY,
                    overall_score REAL DEFAULT 5.0,
                    storytelling_score REAL DEFAULT 5.0,
                    innovation_score REAL DEFAULT 5.0,
                    business_score REAL DEFAULT 5.0,
                    total_battles INTEGER DEFAULT 0,
                    wins INTEGER DEFAULT 0,
                    losses INTEGER DEFAULT 0,
                    elo_rating INTEGER DEFAULT 1500
                )
            ''')
            
            # Restore battles data
            battles_df = dataset.to_pandas()
            battles_df.to_sql('battles', conn, if_exists='replace', index=False)
            print(f"โœ… Restored {len(battles_df)} battles")
            
            # Try to restore model stats
            stats_restored = False
            try:
                stats_dataset = load_dataset(self.hf_repo_id, split="stats", token=self.hf_token)
                if stats_dataset and len(stats_dataset) > 0:
                    stats_df = stats_dataset.to_pandas()
                    stats_df.to_sql('model_stats', conn, if_exists='replace', index=False)
                    print(f"โœ… Restored model stats")
                    stats_restored = True
            except Exception as e:
                print(f"Could not restore stats: {e}")
            
            # If stats not restored, recalculate from battles
            if not stats_restored:
                print("๐Ÿ“Š Recalculating stats from battle history...")
                self._recalculate_stats_from_battles(cursor)
            
            conn.commit()
            conn.close()
            
            return True  # Successfully restored
            
        except Exception as e:
            print(f"Failed to restore from HF: {e}")
            return False
    
    def _recalculate_stats_from_battles(self, cursor):
        """Recalculate model stats from battle history"""
        # Initialize all 4 models
        for model in ["GPT-5", "jetXA", "Gemini-2.5-Pro", "Claude-Opus-4.1"]:
            cursor.execute('''
                INSERT OR REPLACE INTO model_stats 
                (model_name, overall_score, storytelling_score, innovation_score, 
                 business_score, total_battles, wins, losses, elo_rating)
                VALUES (?, 5.0, 5.0, 5.0, 5.0, 0, 0, 0, 1500)
            ''', (model,))
        
        # Get all battles with winners
        cursor.execute('''
            SELECT model_a, model_b, winner, category FROM battles WHERE winner IS NOT NULL
        ''')
        
        battles = cursor.fetchall()
        
        # Process each battle
        for model_a, model_b, winner, category in battles:
            # Update win/loss counts
            if winner == model_a:
                cursor.execute('UPDATE model_stats SET wins = wins + 1, total_battles = total_battles + 1 WHERE model_name = ?', (model_a,))
                cursor.execute('UPDATE model_stats SET losses = losses + 1, total_battles = total_battles + 1 WHERE model_name = ?', (model_b,))
                
                # Update category scores
                self._update_category_scores(cursor, model_a, Category(category), True)
                self._update_category_scores(cursor, model_b, Category(category), False)
            else:
                cursor.execute('UPDATE model_stats SET wins = wins + 1, total_battles = total_battles + 1 WHERE model_name = ?', (model_b,))
                cursor.execute('UPDATE model_stats SET losses = losses + 1, total_battles = total_battles + 1 WHERE model_name = ?', (model_a,))
                
                # Update category scores
                self._update_category_scores(cursor, model_b, Category(category), True)
                self._update_category_scores(cursor, model_a, Category(category), False)
        
        # Recalculate ELO ratings
        self._recalculate_elo_from_battles(cursor)
        
        print(f"โœ… Recalculated stats from {len(battles)} battles")
    
    def _recalculate_elo_from_battles(self, cursor):
        """Recalculate ELO ratings from battle history"""
        # Reset ELO to 1500
        cursor.execute('UPDATE model_stats SET elo_rating = 1500')
        
        # Get battles in chronological order
        cursor.execute('''
            SELECT model_a, model_b, winner FROM battles 
            WHERE winner IS NOT NULL 
            ORDER BY timestamp
        ''')
        
        battles = cursor.fetchall()
        
        for model_a, model_b, winner in battles:
            # Get current ELO ratings
            cursor.execute('SELECT elo_rating FROM model_stats WHERE model_name = ?', (model_a,))
            elo_a = cursor.fetchone()[0]
            
            cursor.execute('SELECT elo_rating FROM model_stats WHERE model_name = ?', (model_b,))
            elo_b = cursor.fetchone()[0]
            
            # Calculate new ELO
            K = 32
            if winner == model_a:
                expected_a = 1 / (1 + 10**((elo_b - elo_a) / 400))
                new_elo_a = int(elo_a + K * (1 - expected_a))
                new_elo_b = int(elo_b + K * (0 - (1 - expected_a)))
            else:
                expected_b = 1 / (1 + 10**((elo_a - elo_b) / 400))
                new_elo_a = int(elo_a + K * (0 - (1 - expected_b)))
                new_elo_b = int(elo_b + K * (1 - expected_b))
            
            cursor.execute('UPDATE model_stats SET elo_rating = ? WHERE model_name = ?', (new_elo_a, model_a))
            cursor.execute('UPDATE model_stats SET elo_rating = ? WHERE model_name = ?', (new_elo_b, model_b))
    
    def _sync_to_hf(self):
        """Sync local database to Hugging Face with improved error handling"""
        if not self.use_hf:
            print("HF sync disabled")
            return
        
        try:
            conn = sqlite3.connect(self.db_path)
            
            # Export battles
            battles_df = pd.read_sql_query("SELECT * FROM battles", conn)
            
            if len(battles_df) > 0:
                print(f"๐Ÿ“ค Syncing {len(battles_df)} battles to HF...")
                
                # Convert to Dataset
                battles_dataset = Dataset.from_pandas(battles_df)
                
                # Push to hub with retry logic
                max_retries = 3
                for attempt in range(max_retries):
                    try:
                        battles_dataset.push_to_hub(
                            self.hf_repo_id,
                            split="train",
                            token=self.hf_token,
                            private=True
                        )
                        print(f"โœ… Successfully pushed {len(battles_df)} battles to HF")
                        break
                    except Exception as push_error:
                        if attempt < max_retries - 1:
                            print(f"โš ๏ธ Push attempt {attempt + 1} failed, retrying...")
                            time.sleep(2)  # Wait before retry
                        else:
                            print(f"โŒ Failed to push to HF after {max_retries} attempts: {push_error}")
            
            # Also sync model stats for backup
            stats_df = pd.read_sql_query("SELECT * FROM model_stats", conn)
            if len(stats_df) > 0:
                try:
                    stats_dataset = Dataset.from_pandas(stats_df)
                    stats_dataset.push_to_hub(
                        self.hf_repo_id,
                        split="stats",
                        token=self.hf_token,
                        private=True
                    )
                    print(f"โœ… Model stats synced to HF")
                except Exception as e:
                    print(f"โš ๏ธ Could not sync stats: {e}")
            
            conn.close()
            
        except Exception as e:
            print(f"โŒ Critical error in HF sync: {e}")
    
    def init_database(self):
        """Initialize SQLite database - ONLY called when no existing data"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        cursor.execute('''
            CREATE TABLE IF NOT EXISTS battles (
                id TEXT PRIMARY KEY,
                prompt_id TEXT,
                prompt_text TEXT,
                category TEXT,
                model_a TEXT,
                model_b TEXT,
                response_a TEXT,
                response_b TEXT,
                winner TEXT,
                voter_id TEXT,
                timestamp DATETIME,
                custom_prompt INTEGER DEFAULT 0,
                language TEXT DEFAULT 'en'
            )
        ''')
        
        cursor.execute('''
            CREATE TABLE IF NOT EXISTS model_stats (
                model_name TEXT PRIMARY KEY,
                overall_score REAL DEFAULT 5.0,
                storytelling_score REAL DEFAULT 5.0,
                innovation_score REAL DEFAULT 5.0,
                business_score REAL DEFAULT 5.0,
                total_battles INTEGER DEFAULT 0,
                wins INTEGER DEFAULT 0,
                losses INTEGER DEFAULT 0,
                elo_rating INTEGER DEFAULT 1500
            )
        ''')
        
        conn.commit()
        conn.close()
        
        self._init_models()
    
    def _init_models(self):
        """Initialize all 4 models"""
        models = ["GPT-5", "jetXA", "Gemini-2.5-Pro", "Claude-Opus-4.1"]
        
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        for model in models:
            cursor.execute('''
                INSERT OR IGNORE INTO model_stats (model_name) VALUES (?)
            ''', (model,))
        
        conn.commit()
        conn.close()
    
    def save_battle(self, battle: Battle):
        """Save battle result with proper duplicate prevention and sync"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        try:
            # First check if this battle already exists
            cursor.execute('SELECT id, winner FROM battles WHERE id = ?', (battle.id,))
            existing = cursor.fetchone()
            
            if existing and existing[1]:
                print(f"โš ๏ธ Battle {battle.id} already has a winner: {existing[1]}")
                conn.close()
                return  # Don't update if already voted
            
            # Insert or update the battle
            cursor.execute('''
                INSERT OR REPLACE INTO battles VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
            ''', (
                battle.id,
                battle.prompt_id,
                battle.prompt_text,
                battle.category.value,
                battle.model_a,
                battle.model_b,
                battle.response_a,
                battle.response_b,
                battle.winner,
                battle.voter_id,
                battle.timestamp.isoformat(),
                1 if battle.custom_prompt else 0,
                battle.language
            ))
            
            if battle.winner:
                winner = battle.winner
                loser = battle.model_b if winner == battle.model_a else battle.model_a
                
                # Only update stats if this is a new vote
                if not existing or not existing[1]:
                    print(f"๐Ÿ“Š Updating stats: {winner} wins, {loser} loses")
                    
                    # Update winner stats
                    cursor.execute('''
                        UPDATE model_stats 
                        SET total_battles = total_battles + 1, 
                            wins = wins + 1
                        WHERE model_name = ?
                    ''', (winner,))
                    
                    # Update loser stats
                    cursor.execute('''
                        UPDATE model_stats 
                        SET total_battles = total_battles + 1, 
                            losses = losses + 1
                        WHERE model_name = ?
                    ''', (loser,))
                    
                    # Update category scores
                    self._update_category_scores(cursor, winner, battle.category, True)
                    self._update_category_scores(cursor, loser, battle.category, False)
                    
                    # Update ELO ratings
                    self._update_elo_ratings(cursor, winner, loser)
                    
                    print(f"โœ… Stats updated for battle {battle.id}")
            
            conn.commit()
            print(f"๐Ÿ’พ Battle {battle.id} saved to local database")
            
        except Exception as e:
            print(f"โŒ Error saving battle: {e}")
            conn.rollback()
        finally:
            conn.close()
        
        # Sync to Hugging Face after saving
        self._sync_to_hf()
    
    def _update_category_scores(self, cursor, model, category, is_winner):
        """Update category-specific scores"""
        column_map = {
            Category.STORYTELLING: "storytelling_score",
            Category.INNOVATION: "innovation_score",
            Category.BUSINESS: "business_score"
        }
        
        score_column = column_map.get(category, "overall_score")
        
        cursor.execute(f'SELECT {score_column} FROM model_stats WHERE model_name = ?', (model,))
        result = cursor.fetchone()
        
        if result:
            current_score = result[0]
        else:
            current_score = 5.0
        
        if is_winner:
            new_score = min(10, current_score + 0.2)
        else:
            new_score = max(0, current_score - 0.1)
        
        cursor.execute(f'UPDATE model_stats SET {score_column} = ? WHERE model_name = ?', 
                      (new_score, model))
        
        # Update overall score
        cursor.execute('''
            UPDATE model_stats 
            SET overall_score = (storytelling_score + innovation_score + business_score) / 3.0
            WHERE model_name = ?
        ''', (model,))
    
    def _update_elo_ratings(self, cursor, winner, loser):
        """Update ELO ratings"""
        K = 32
        
        cursor.execute('SELECT elo_rating FROM model_stats WHERE model_name = ?', (winner,))
        winner_elo = cursor.fetchone()[0]
        
        cursor.execute('SELECT elo_rating FROM model_stats WHERE model_name = ?', (loser,))
        loser_elo = cursor.fetchone()[0]
        
        expected_winner = 1 / (1 + 10**((loser_elo - winner_elo) / 400))
        expected_loser = 1 / (1 + 10**((winner_elo - loser_elo) / 400))
        
        new_winner_elo = int(winner_elo + K * (1 - expected_winner))
        new_loser_elo = int(loser_elo + K * (0 - expected_loser))
        
        cursor.execute('UPDATE model_stats SET elo_rating = ? WHERE model_name = ?', 
                      (new_winner_elo, winner))
        cursor.execute('UPDATE model_stats SET elo_rating = ? WHERE model_name = ?', 
                      (new_loser_elo, loser))
    
    def get_leaderboard(self, category: Optional[Category] = None) -> pd.DataFrame:
        """Get leaderboard data"""
        conn = sqlite3.connect(self.db_path)
        
        if category:
            column_map = {
                Category.STORYTELLING: "storytelling_score",
                Category.INNOVATION: "innovation_score",
                Category.BUSINESS: "business_score"
            }
            sort_column = column_map.get(category, "overall_score")
        else:
            sort_column = "overall_score"
        
        query = f'''
            SELECT 
                model_name,
                ROUND(overall_score, 1) as overall_score,
                ROUND(storytelling_score, 1) as storytelling_score,
                ROUND(innovation_score, 1) as innovation_score,
                ROUND(business_score, 1) as business_score,
                total_battles,
                wins,
                CASE 
                    WHEN total_battles > 0 
                    THEN ROUND(100.0 * wins / total_battles, 1)
                    ELSE 0 
                END as win_rate,
                elo_rating
            FROM model_stats
            ORDER BY {sort_column} DESC, elo_rating DESC
        '''
        
        df = pd.read_sql_query(query, conn)
        conn.close()
        
        df.insert(0, 'rank', range(1, len(df) + 1))
        return df
    
    def debug_database_state(self):
        """Debug method to check current database state"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        # Check battles count
        cursor.execute("SELECT COUNT(*) FROM battles")
        total_battles = cursor.fetchone()[0]
        
        cursor.execute("SELECT COUNT(*) FROM battles WHERE winner IS NOT NULL")
        voted_battles = cursor.fetchone()[0]
        
        # Check model stats
        cursor.execute("SELECT * FROM model_stats ORDER BY elo_rating DESC")
        stats = cursor.fetchall()
        
        conn.close()
        
        print("\n" + "="*50)
        print("๐Ÿ“Š DATABASE STATE DEBUG")
        print("="*50)
        print(f"Total battles: {total_battles}")
        print(f"Voted battles: {voted_battles}")
        print("\nModel Stats:")
        print("-"*50)
        for stat in stats:
            print(f"{stat[0]:20} | Battles: {stat[5]:3} | Wins: {stat[6]:3} | ELO: {stat[8]:4}")
        print("="*50 + "\n")
        
        return {
            "total_battles": total_battles,
            "voted_battles": voted_battles,
            "model_stats": stats
        }

# ==================== Fixed LLM Interface with 4 Models ====================
class LLMInterface:
    """Interface for GPT-5, jetXA, Gemini 2.5 Pro, and Claude Opus 4.1 models"""
    
    def __init__(self):
        self.models = ["GPT-5", "jetXA", "Gemini-2.5-Pro", "Claude-Opus-4.1"]
        self.response_cache = {}
        self.cache_enabled = False  # Disable caching by default
        
        # Initialize OpenAI client for GPT-5
        self.openai_client = None
        openai_key = os.getenv("OPENAI_API_KEY")
        if openai_key and OpenAI:
            try:
                self.openai_client = OpenAI(api_key=openai_key)
                print("โœ… GPT-5 client initialized")
            except Exception as e:
                print(f"โŒ GPT-5 initialization failed: {e}")
        else:
            print("โš ๏ธ GPT-5: No API key or OpenAI library not installed")
        
        # Initialize Gradio client for jetXA
        self.gradio_client = None
        jetxa_space = os.getenv("jetXA_API", "aiqtech/tests")
        hf_token = os.getenv("HF_TOKEN")
        
        if GradioClient:
            connection_attempts = [
                lambda: GradioClient(jetxa_space, hf_token=hf_token) if hf_token else GradioClient(jetxa_space),
                lambda: GradioClient(f"https://huggingface.co/spaces/{jetxa_space}"),
                lambda: GradioClient(f"https://{jetxa_space.replace('/', '-')}.hf.space"),
                lambda: GradioClient(src=jetxa_space),
                lambda: GradioClient("aiqtech/tests")
            ]
            
            for i, attempt in enumerate(connection_attempts, 1):
                try:
                    self.gradio_client = attempt()
                    if hasattr(self.gradio_client, 'view_api'):
                        api_info = self.gradio_client.view_api()
                        print(f"โœ… jetXA client initialized successfully using method {i}!")
                        break
                except Exception as e:
                    if i == len(connection_attempts):
                        print(f"โš ๏ธ jetXA: All connection attempts failed. Last error: {e}")
                        print("Will use fallback responses for jetXA")
                    else:
                        continue
        else:
            print("โš ๏ธ jetXA: Gradio client not installed")
        
        # Initialize Gemini client
        self.gemini_client = None
        gemini_key = os.getenv("GEMINI_API_KEY")
        if gemini_key and genai:
            try:
                self.gemini_client = genai.Client(api_key=gemini_key)
                print("โœ… Gemini 2.5 Pro client initialized")
            except Exception as e:
                print(f"โŒ Gemini initialization failed: {e}")
        else:
            print("โš ๏ธ Gemini: No API key or google-genai library not installed")
        
        # Initialize Claude client
        self.claude_client = None
        claude_key = os.getenv("ANTHROPIC_API_KEY")
        if claude_key and anthropic:
            try:
                self.claude_client = anthropic.Anthropic(api_key=claude_key)
                print("โœ… Claude Opus 4.1 client initialized")
            except Exception as e:
                print(f"โŒ Claude initialization failed: {e}")
        else:
            print("โš ๏ธ Claude: No API key or anthropic library not installed")
    
    def clear_cache(self):
        """Clear all cached responses"""
        self.response_cache = {}
        print("โœ… Cache cleared")
    
    def generate_response_stream(self, model: str, prompt: str, language: str = "en") -> Generator[str, None, None]:
        """Generate streaming response with proper accumulation"""
        
        # Add language and creativity instructions
        if language == "ko":
            instruction = "์ฐฝ์˜์ ์ด๊ณ  ํ˜์‹ ์ ์ธ ํ•œ๊ตญ์–ด ๋‹ต๋ณ€์„ ์ž‘์„ฑํ•ด์ฃผ์„ธ์š”. ๋…์ฐฝ์ ์ด๊ณ  ์ƒ์„ธํ•œ ์•„์ด๋””์–ด๋ฅผ ์ œ์‹œํ•˜์„ธ์š”."
        else:
            instruction = "Provide a highly creative and innovative response. Be original and detailed."
        
        full_prompt = f"{instruction}\n\n{prompt}"
        
        try:
            if model == "GPT-5":
                # Stream GPT-5 with proper accumulation
                accumulated = ""
                for chunk in self._stream_gpt5(full_prompt):
                    accumulated += chunk
                    yield accumulated  # Always yield the accumulated text
                    
            elif model == "jetXA":
                # Get full response and simulate streaming
                full_response = self._get_jetxa_response(full_prompt)
                
                if full_response:
                    # Format jetXA response with proper spacing
                    formatted_response = self._format_jetxa_response(full_response)
                    
                    # Simulate streaming word by word for jetXA for smoother effect
                    words = formatted_response.split()
                    accumulated = ""
                    
                    # Stream words in small batches for natural effect
                    batch_size = 2  # Stream 2 words at a time
                    for i in range(0, len(words), batch_size):
                        batch = words[i:i+batch_size]
                        for word in batch:
                            if accumulated:
                                accumulated += " "
                            accumulated += word
                        yield accumulated  # Yield accumulated text after each batch
                        time.sleep(0.03)  # Small delay between batches
                else:
                    # Use fallback if jetXA fails
                    fallback = self._generate_fallback(model, prompt, language)
                    # Stream fallback with accumulation
                    words = fallback.split()
                    accumulated = ""
                    for word in words:
                        if accumulated:
                            accumulated += " "
                        accumulated += word
                        yield accumulated
                        time.sleep(0.02)
                        
            elif model == "Gemini-2.5-Pro":
                # Stream Gemini with proper accumulation
                accumulated = ""
                for chunk in self._stream_gemini(full_prompt):
                    accumulated += chunk
                    yield accumulated
                    
            elif model == "Claude-Opus-4.1":
                # Stream Claude with proper accumulation
                accumulated = ""
                for chunk in self._stream_claude(full_prompt):
                    accumulated += chunk
                    yield accumulated
            else:
                # Unknown model - use fallback
                fallback = self._generate_fallback(model, prompt, language)
                # Stream fallback with accumulation
                words = fallback.split()
                accumulated = ""
                for word in words:
                    if accumulated:
                        accumulated += " "
                    accumulated += word
                    yield accumulated
                    time.sleep(0.02)
                    
        except Exception as e:
            print(f"Error streaming {model}: {e}")
            fallback = self._generate_fallback(model, prompt, language)
            yield fallback

    def _stream_gemini(self, prompt: str) -> Generator[str, None, None]:
        """Stream Gemini 2.5 Pro response"""
        if not self.gemini_client:
            fallback = self._generate_fallback("Gemini-2.5-Pro", prompt, "en")
            words = fallback.split()
            for word in words:
                yield word + " "
                time.sleep(0.02)
            return
        
        try:
            contents = [
                types.Content(
                    role="user",
                    parts=[types.Part.from_text(text=prompt)],
                ),
            ]
            
            # ์ˆ˜์ •๋œ ์„ค์ • - max_output_tokens ์ฆ๊ฐ€ ๋ฐ thinking_config ์ œ๊ฑฐ
            generate_content_config = types.GenerateContentConfig(
                response_mime_type="text/plain",
                temperature=0.9,  # ์ฐฝ์˜์„ฑ์„ ์œ„ํ•ด ์˜จ๋„ ์ƒ์Šน
                max_output_tokens=2048,  # ํ† ํฐ ์ˆ˜ ์ฆ๊ฐ€
                top_p=0.95,
                top_k=40,
            )
        
            # ์ „์ฒด ์‘๋‹ต์„ ์ˆ˜์ง‘
            full_response = ""
            
            for chunk in self.gemini_client.models.generate_content_stream(
                model="gemini-2.0-flash-exp",  # ๋˜๋Š” "gemini-2.0-flash-thinking-exp-1219"
                contents=contents,
                config=generate_content_config,
            ):
                if chunk.text:
                    full_response += chunk.text
                    yield chunk.text
            
            # ์‘๋‹ต์ด ๋„ˆ๋ฌด ์งง์œผ๋ฉด ์žฌ์‹œ๋„
            if len(full_response) < 100:
                print(f"โš ๏ธ Gemini response too short ({len(full_response)} chars), using fallback")
                fallback = self._generate_fallback("Gemini-2.5-Pro", prompt, "en")
                yield fallback
                    
        except Exception as e:
            print(f"Gemini streaming error: {e}")
            fallback = self._generate_fallback("Gemini-2.5-Pro", prompt, "en")
            yield fallback
    
    def _stream_claude(self, prompt: str) -> Generator[str, None, None]:
        """Stream Claude Opus 4.1 response"""
        if not self.claude_client:
            fallback = self._generate_fallback("Claude-Opus-4.1", prompt, "en")
            words = fallback.split()
            for word in words:
                yield word + " "
                time.sleep(0.02)
            return
        
        try:
            with self.claude_client.messages.stream(
                model="claude-opus-4-1-20250805",
                max_tokens=1500,
                temperature=0.8,
                messages=[
                    {
                        "role": "user",
                        "content": [
                            {
                                "type": "text",
                                "text": prompt
                            }
                        ]
                    }
                ]
            ) as stream:
                for text in stream.text_stream:
                    yield text
                    
        except Exception as e:
            print(f"Claude streaming error: {e}")
            fallback = self._generate_fallback("Claude-Opus-4.1", prompt, "en")
            yield fallback
    
    def _format_jetxa_response(self, text: str) -> str:
        """Format jetXA response with proper spacing and line breaks for better readability"""
        # Clean up the response first
        text = self._clean_markdown_response(text)
        
        # Split into lines
        lines = text.split('\n')
        formatted_lines = []
        
        for i, line in enumerate(lines):
            line = line.strip()
            
            if not line:
                # Keep empty lines for spacing
                formatted_lines.append('')
                continue
            
            # Add extra spacing around headers
            if line.startswith('#'):
                # Add double blank line before headers (except first line)
                if i > 0 and formatted_lines and formatted_lines[-1].strip():
                    formatted_lines.append('')
                    formatted_lines.append('')
                formatted_lines.append(line)
                # Add blank line after major headers
                if line.startswith('# ') or line.startswith('## '):
                    formatted_lines.append('')
            # Add spacing around lists
            elif line.startswith('- ') or line.startswith('* ') or re.match(r'^\d+\. ', line):
                # Add blank line before first list item
                if i > 0 and formatted_lines and formatted_lines[-1].strip() and not (
                    formatted_lines[-1].startswith('- ') or 
                    formatted_lines[-1].startswith('* ') or 
                    re.match(r'^\d+\. ', formatted_lines[-1])
                ):
                    formatted_lines.append('')
                formatted_lines.append(line)
            else:
                formatted_lines.append(line)
        
        # Join with newlines
        result = '\n'.join(formatted_lines)
        
        # Clean up excessive blank lines (max 2 consecutive)
        while '\n\n\n\n' in result:
            result = result.replace('\n\n\n\n', '\n\n')
        while '\n\n\n' in result:
            result = result.replace('\n\n\n', '\n\n')
        
        return result.strip()
    
    def _stream_gpt5(self, prompt: str) -> Generator[str, None, None]:
        """Stream GPT-5 API response - returns chunks only (not accumulated)"""
        if not self.openai_client:
            fallback = self._generate_fallback("GPT-5", prompt, "en")
            words = fallback.split()
            for word in words:
                yield word + " "
                time.sleep(0.02)
            return
        
        try:
            stream = self.openai_client.chat.completions.create(
                model="gpt-4",  # Use gpt-4 as fallback if gpt-5 not available
                messages=[{"role": "user", "content": prompt}],
                max_tokens=1500,
                temperature=0.8,
                stream=True
            )
            
            for chunk in stream:
                if chunk.choices[0].delta.content is not None:
                    yield chunk.choices[0].delta.content  # Yield only the chunk
        except Exception as e:
            print(f"GPT-5 streaming error: {e}")
            fallback = self._generate_fallback("GPT-5", prompt, "en")
            yield fallback
    
    def _get_jetxa_response(self, prompt: str) -> str:
        """Get complete response from jetXA"""
        if not self.gradio_client:
            return ""
        
        try:
            result = self.gradio_client.predict(
                message=prompt,
                history=[],
                use_search=False,
                show_agent_thoughts=False,
                search_count=5,
                api_name="/process_query_optimized"
            )
            
            response_text = ""
            
            if result and isinstance(result, (tuple, list)) and len(result) >= 1:
                chat_history = result[0]
                
                if isinstance(chat_history, list) and len(chat_history) > 0:
                    for msg in reversed(chat_history):
                        if isinstance(msg, dict):
                            content = msg.get('content', '')
                            if content:
                                response_text = str(content)
                                break
                        elif isinstance(msg, (list, tuple)) and len(msg) >= 2:
                            if msg[1]:
                                response_text = str(msg[1])
                                break
                
                if not response_text:
                    for i in range(1, min(3, len(result))):
                        if result[i] and isinstance(result[i], str) and result[i].strip():
                            response_text = result[i]
                            break
            
            if response_text:
                # Clean up any potential formatting issues
                response_text = self._clean_markdown_response(response_text)
            
            return response_text
                
        except Exception as e:
            print(f"jetXA response error: {e}")
            return ""
    
    def _clean_markdown_response(self, text: str) -> str:
        """Clean and fix common markdown formatting issues"""
        # Remove any duplicate markers or broken formatting
        text = text.replace('| ---', '|---')  # Fix table separators
        text = text.replace('---\n---', '---')  # Remove duplicate horizontal rules
        
        # Ensure proper spacing around headers
        lines = text.split('\n')
        cleaned_lines = []
        
        for i, line in enumerate(lines):
            # Fix header formatting
            if line.strip().startswith('#'):
                # Ensure space after # symbols
                if '#' in line and not line.startswith('# '):
                    parts = line.split('#', 1)
                    if len(parts) > 1:
                        hash_count = len(line) - len(line.lstrip('#'))
                        line = '#' * hash_count + ' ' + parts[-1].strip()
                
                # Add blank line before headers (except first line)
                if i > 0 and cleaned_lines and cleaned_lines[-1].strip():
                    cleaned_lines.append('')
            
            # Fix table formatting
            if '|' in line:
                # Ensure proper table separator
                if all(c in ['-', '|', ' '] for c in line.strip()):
                    line = line.replace(' ', '').replace('|-', '|---').replace('-|', '---|')
                    if not line.startswith('|'):
                        line = '|' + line
                    if not line.endswith('|'):
                        line = line + '|'
            
            cleaned_lines.append(line)
        
        return '\n'.join(cleaned_lines)
    
    def _generate_fallback(self, model: str, prompt: str, language: str) -> str:
        """Generate high-quality fallback response with language support and proper markdown"""
        
        # Determine category from prompt
        if any(word in prompt.lower() for word in ["story", "movie", "novel", "plot", "์Šคํ† ๋ฆฌ", "์˜ํ™”", "์†Œ์„ค"]):
            category = "story"
        elif any(word in prompt.lower() for word in ["innovate", "invent", "revolution", "ํ˜์‹ ", "๋ฐœ๋ช…", "๊ฐœ๋ฐœ"]):
            category = "innovation"
        else:
            category = "business"
        
        # Korean responses with better markdown formatting
        if language == "ko":
            responses = {
                "story": {
                    "GPT-5": """# ์–‘์ž ๊ฑฐ์šธ

## ์‹œ๋†‰์‹œ์Šค
ํ•œ ํ˜•์‚ฌ๊ฐ€ ๋„์‹œ์˜ ๋ชจ๋“  ๊ฑฐ์šธ์ด ์‹ค์ œ๋กœ **๋ฒ”์ฃ„๊ฐ€ ์˜ˆ๋ฐฉ๋œ ๋‹ค๋ฅธ ํƒ€์ž„๋ผ์ธ**์œผ๋กœ ํ†ตํ•˜๋Š” ํฌํ„ธ์ž„์„ ๋ฐœ๊ฒฌํ•œ๋‹ค.""",
                    "jetXA": """# ๊ฐ์ • ๊ณ ๊ณ ํ•™

## ๊ธฐํš ์˜๋„
2045๋…„, ๊ณ ๊ณ ํ•™์ž๋“ค์€ ์œ ๋ฌผ์„ ๋ฐœ๊ตดํ•˜์ง€ ์•Š๋Š”๋‹คโ€”๊ทธ๋“ค์€ **๋น„๊ทน์˜ ์žฅ์†Œ์— ๋‚จ๊ฒจ์ง„ ์••์ถ•๋œ ์ธ๊ฐ„ ๊ฐ์ •**์„ ๋ฐœ๊ตดํ•œ๋‹ค.""",
                    "Gemini-2.5-Pro": """# ๊ธฐ์–ต์˜ ๋„์„œ๊ด€

## ์ค„๊ฑฐ๋ฆฌ
์ฃฝ์€ ์‚ฌ๋žŒ๋“ค์˜ ๋งˆ์ง€๋ง‰ ๊ธฐ์–ต์ด ์ฑ…์œผ๋กœ ๋ณ€ํ•˜๋Š” **์‚ฌํ›„ ๋„์„œ๊ด€**์„ ๋ฐœ๊ฒฌํ•œ ์‚ฌ์„œ์˜ ์ด์•ผ๊ธฐ.""",
                    "Claude-Opus-4.1": """# ์‹œ๊ฐ„์˜ ์ •์›์‚ฌ

## ๊ฐœ์š”
๋งค์ผ ๋ฐค ๋‹ค๋ฅธ ์‹œ๋Œ€๋กœ ์ด๋™ํ•˜๋Š” ์ •์›์„ ๊ด€๋ฆฌํ•˜๋ฉฐ **์—ญ์‚ฌ์˜ ์ˆœ๊ฐ„๋“ค์„ ๊ฐ€๊พธ๋Š”** ์ •์›์‚ฌ์˜ ๋ชจํ—˜."""
                },
                "innovation": {
                    "GPT-5": """# ๐Ÿšฒ ์ž์ „๊ฑฐ ํ˜์‹  5๊ฐ€์ง€

## 1. **์ค‘๋ ฅ ๋ฌด์‹œ ๋ฐ”ํ€ด** (Gravity Defiance Wheels)
- **๊ธฐ์ˆ **: ์ „์ž๊ธฐ ๋ฆผ์ด ์˜ค๋ฅด๋ง‰๊ธธ์—์„œ ๋ฌด๊ฒŒ๋ฅผ ๊ฑฐ์˜ 0์œผ๋กœ ๊ฐ์†Œ""",
                    "jetXA": """# ๐Ÿ“ง ์ด๋ฉ”์ผ ํ˜๋ช… 5๊ฐ€์ง€

## 1. **์‹œ๊ฐ„ ๋ฉ”์‹œ์ง•** (Temporal Messaging)
### ํ•ต์‹ฌ ๊ธฐ๋Šฅ
- โฐ ๊ณผ๊ฑฐ/๋ฏธ๋ž˜๋กœ ์ด๋ฉ”์ผ ์ „์†ก""",
                    "Gemini-2.5-Pro": """# ๐Ÿšฒ ์ž์ „๊ฑฐ ๋ฏธ๋ž˜ ํ˜์‹ 

## 1. **AI ๊ท ํ˜• ์‹œ์Šคํ…œ**
- ์ž์ด๋กœ์Šค์ฝ”ํ”„์™€ AI๊ฐ€ ๊ฒฐํ•ฉ๋˜์–ด ์ ˆ๋Œ€ ๋„˜์–ด์ง€์ง€ ์•Š๋Š” ์ž์ „๊ฑฐ""",
                    "Claude-Opus-4.1": """# ๐Ÿ“ง ์ด๋ฉ”์ผ ์ง„ํ™”

## 1. **๊ฐ์ • ์ „์†ก ์‹œ์Šคํ…œ**
- ํ…์ŠคํŠธ์™€ ํ•จ๊ป˜ ์ž‘์„ฑ์ž์˜ ๊ฐ์ • ์ƒํƒœ๋ฅผ ์ „๋‹ฌํ•˜๋Š” ๊ธฐ์ˆ """
                },
                "business": {
                    "GPT-5": """# ๐Ÿš NeuralNest - 10์–ต๋‹ฌ๋Ÿฌ ๋“œ๋ก  ์‹ฌ๋ฆฌ ํ”Œ๋žซํผ

## ์‚ฌ์—… ๊ฐœ์š”

### ๋น„์ „
> **"์œ„๊ธฐ ์ง€์—ญ์—์„œ ์‹ค์‹œ๊ฐ„ ์ •์‹  ๊ฑด๊ฐ• ์ง€์›์„ ์ œ๊ณตํ•˜๋Š” ์„ธ๊ณ„ ์ตœ์ดˆ AI ๋“œ๋ก  ํ”Œ๋žซํผ"**""",
                    "jetXA": """# ๐Ÿ’พ MemoryBank - ์›” 100๋งŒ์› ๊ตฌ๋… ์„œ๋น„์Šค

## ์„œ๋น„์Šค ๊ฐœ์š”

### ํ•ต์‹ฌ ๊ฐ€์น˜
> **"๋‹น์‹ ์˜ ๋ชจ๋“  ๊ธฐ์–ต์„ ์˜์›ํžˆ ๋ณด์กดํ•˜๊ณ  ๋‹ค์‹œ ๊ฒฝํ—˜ํ•˜์„ธ์š”"**""",
                    "Gemini-2.5-Pro": """# ๐Ÿค– RoboChef - ๋กœ๋ด‡ ์š”๋ฆฌ์‚ฌ ํ”Œ๋žซํผ

## ๋น„์ฆˆ๋‹ˆ์Šค ๋ชจ๋ธ

### ๋ชฉํ‘œ
> **"๋ฏธ์А๋žญ ์Šคํƒ€ ์…ฐํ”„์˜ ์š”๋ฆฌ๋ฅผ ์ง‘์—์„œ ์žฌํ˜„ํ•˜๋Š” AI ๋กœ๋ด‡"**""",
                    "Claude-Opus-4.1": """# ๐Ÿข VirtualOffice - ๋ฉ”ํƒ€๋ฒ„์Šค ์‚ฌ๋ฌด์‹ค

## ์„œ๋น„์Šค ์ปจ์…‰

### ๋ฏธ์…˜
> **"๋ฌผ๋ฆฌ์  ์‚ฌ๋ฌด์‹ค์ด ํ•„์š” ์—†๋Š” ์™„๋ฒฝํ•œ ๊ฐ€์ƒ ๊ทผ๋ฌด ํ™˜๊ฒฝ"**"""
                }
            }
        else:
            # English responses
            responses = {
                "story": {
                    "GPT-5": """# The Quantum Mirror

## Synopsis
A detective discovers that every mirror in the city is actually a portal to **alternate timelines where crimes were prevented**.""",
                    "jetXA": """# Emotional Archaeology

## Concept
In 2045, archaeologists don't dig for artifactsโ€”they excavate **compressed human emotions left in places of tragedy**.""",
                    "Gemini-2.5-Pro": """# The Memory Library

## Plot
A librarian discovers a **posthumous library** where dead people's last memories transform into books.""",
                    "Claude-Opus-4.1": """# The Time Gardener

## Overview
Adventures of a gardener who tends to a garden that **shifts to different historical eras** each night."""
                },
                "innovation": {
                    "GPT-5": """# ๐Ÿšฒ 5 Bicycle Innovations

## 1. **Gravity Defiance Wheels**
- **Tech**: Electromagnetic rims reduce weight to near-zero when pedaling uphill""",
                    "jetXA": """# ๐Ÿ“ง 5 Email Revolutionaries

## 1. **Temporal Messaging**
### Core Features
- โฐ Send emails to past/future""",
                    "Gemini-2.5-Pro": """# ๐Ÿšฒ Future Bicycle Tech

## 1. **AI Balance System**
- Gyroscope + AI creates a bicycle that never falls over""",
                    "Claude-Opus-4.1": """# ๐Ÿ“ง Email Evolution

## 1. **Emotion Transfer System**
- Technology that transmits the sender's emotional state with text"""
                },
                "business": {
                    "GPT-5": """# ๐Ÿš NeuralNest - $1B Drone Psychology Platform

## Business Overview

### Vision
> **"World's first AI drone platform providing real-time mental health support in crisis zones"**""",
                    "jetXA": """# ๐Ÿ’พ MemoryBank - $1000/month Subscription

## Service Overview

### Core Value
> **"Preserve and re-experience all your memories forever"**""",
                    "Gemini-2.5-Pro": """# ๐Ÿค– RoboChef - Robot Chef Platform

## Business Model

### Goal
> **"AI robots that recreate Michelin star chef dishes at home"**""",
                    "Claude-Opus-4.1": """# ๐Ÿข VirtualOffice - Metaverse Workspace

## Service Concept

### Mission
> **"Perfect virtual work environment eliminating need for physical offices"**"""
                }
            }
        
        return responses[category].get(model, responses[category]["GPT-5"])

# ==================== Main Arena Class ====================
class CreativityArena:
    def __init__(self):
        self.db = ArenaDatabase()
        self.llm = LLMInterface()
        self.current_battle = None
    
    def get_random_prompt(self, category: Category, language: str = "en") -> dict:
        """Get random prompt from database"""
        prompts = PROMPTS[category].get(language, PROMPTS[category]["en"])
        return random.choice(prompts)
    
    def start_new_battle_stream(self, category: str, custom_prompt: str = None, language: str = "en"):
        """Start new battle with streaming responses"""
        
        # Select category
        if category == "random":
            category = random.choice(list(Category))
        else:
            category = Category(category)
        
        # Get or set prompt
        if custom_prompt and custom_prompt.strip():
            prompt_text = custom_prompt.strip()
            is_custom = True
        else:
            prompt_data = self.get_random_prompt(category, language)
            prompt_text = prompt_data["text"]
            is_custom = False
        
        # Randomly select 2 models from the 4 available
        models = random.sample(["GPT-5", "jetXA", "Gemini-2.5-Pro", "Claude-Opus-4.1"], 2)
        
        # Create battle structure
        battle = Battle(
            id=hashlib.md5(f"{datetime.now().isoformat()}-{random.randint(0,999999)}".encode()).hexdigest(),
            prompt_id=hashlib.md5(prompt_text.encode()).hexdigest(),
            prompt_text=prompt_text,
            model_a=models[0],
            model_b=models[1],
            response_a="",
            response_b="",
            winner=None,
            voter_id="",
            timestamp=datetime.now(),
            category=category,
            custom_prompt=is_custom,
            language=language
        )
        
        self.current_battle = battle
        
        return {
            "prompt": prompt_text,
            "category": category.value,
            "models": models,
            "battle": battle
        }
    
    def vote(self, choice: str, voter_id: str = None):
        """Process vote with better error handling"""
        if not self.current_battle:
            print("โŒ No active battle to vote on")
            return {"error": "No active battle"}
        
        # Ensure we have the complete battle data
        if not self.current_battle.response_a or not self.current_battle.response_b:
            print("โš ๏ธ Battle responses not complete")
            return {"error": "Battle responses not complete"}
        
        # Set the winner
        self.current_battle.winner = self.current_battle.model_a if choice == "A" else self.current_battle.model_b
        self.current_battle.voter_id = voter_id or f"anonymous_{datetime.now().timestamp()}"
        
        print(f"๐Ÿ—ณ๏ธ Vote recorded: {choice} -> {self.current_battle.winner}")
        
        # Save to database
        self.db.save_battle(self.current_battle)
        
        # Force immediate sync to HF
        self.db._sync_to_hf()
        
        return {
            "model_a": self.current_battle.model_a,
            "model_b": self.current_battle.model_b,
            "winner": self.current_battle.winner
        }
    
    def get_leaderboard(self, category: Optional[Category] = None):
        """Get leaderboard from database"""
        return self.db.get_leaderboard(category)

# ==================== Periodic Sync Function ====================
def periodic_sync(arena):
    """Periodically sync to HF every 30 seconds"""
    while True:
        time.sleep(30)
        try:
            arena.db._sync_to_hf()
            print(f"โฐ Periodic sync completed at {datetime.now()}")
        except Exception as e:
            print(f"โฐ Periodic sync failed: {e}")

# ==================== Gradio Interface ====================
def create_app():
    arena = CreativityArena()
    
    # Updated CSS with pastel colors and proper markdown rendering
    css = """
    .gradio-container {
        background: linear-gradient(135deg, #f5e6ff 0%, #e6f3ff 50%, #ffeef5 100%);
        font-family: 'Inter', sans-serif;
    }
    .main-header {
        background: rgba(255, 255, 255, 0.98);
        border-radius: 20px;
        padding: 2rem;
        text-align: center;
        margin-bottom: 2rem;
        box-shadow: 0 4px 20px rgba(150, 100, 200, 0.15);
        border: 1px solid rgba(200, 180, 220, 0.3);
    }
    .response-container {
        background: rgba(255, 255, 255, 0.95);
        border-radius: 15px;
        padding: 1.5rem;
        min-height: 400px;
        max-height: 800px;
        overflow-y: auto;
        box-shadow: 0 3px 15px rgba(150, 100, 200, 0.1);
        transition: transform 0.3s ease;
        border: 1px solid rgba(200, 180, 220, 0.2);
    }
    .response-container:hover {
        transform: translateY(-3px);
        box-shadow: 0 6px 20px rgba(150, 100, 200, 0.2);
    }
    
    /* Markdown specific styles */
    .markdown-text {
        line-height: 1.6;
        color: #2d3748;
    }
    .markdown-text h1 {
        font-size: 2.5em !important;
        font-weight: bold;
        color: #6b46c1;
        margin-top: 1em;
        margin-bottom: 0.5em;
        border-bottom: 2px solid #e9d8fd;
        padding-bottom: 0.3em;
    }
    .markdown-text h2 {
        font-size: 2em !important;
        font-weight: bold;
        color: #805ad5;
        margin-top: 0.8em;
        margin-bottom: 0.4em;
    }
    .markdown-text h3 {
        font-size: 1.5em !important;
        font-weight: bold;
        color: #9f7aea;
        margin-top: 0.6em;
        margin-bottom: 0.3em;
    }
    """
    
    with gr.Blocks(title="AI Models Battle Arena", theme=gr.themes.Soft(), css=css) as app:
        current_lang = gr.State(value="en")
        
        # Language change handler
        def update_language(lang_value):
            return lang_value
        
        def update_ui_text(lang):
            ui = UI_TEXT[lang]
            return (
                f"""
                <div class="main-header">
                    <h1 style="color: #6b46c1; font-size: 2.5rem;">{ui['title']}</h1>
                    <p style="color: #805ad5; font-size: 1.2rem;">{ui['subtitle']}</p>
                </div>
                """,
                ui['leaderboard_title'],
                gr.update(label=ui['category_label']),
                gr.update(label=ui['custom_prompt_label']),
                gr.update(placeholder=ui['custom_prompt_placeholder']),
                gr.update(value=ui['new_battle_btn']),
                ui['model_a'],
                ui['model_b'],
                gr.update(value=ui['vote_a']),
                gr.update(value=ui['vote_b']),
                gr.update(label=ui['category_filter']),
                gr.update(value=ui['refresh_btn']),
                gr.update(choices=[
                    (ui['categories']['random'], "random"),
                    (ui['categories']['storytelling'], "storytelling"),
                    (ui['categories']['innovation'], "innovation"),
                    (ui['categories']['business'], "business")
                ]),
                gr.update(choices=[
                    (ui['filter_categories']['overall'], "overall"),
                    (ui['filter_categories']['storytelling'], "storytelling"),
                    (ui['filter_categories']['innovation'], "innovation"),
                    (ui['filter_categories']['business'], "business")
                ])
            )
        
        # Header
        with gr.Row():
            with gr.Column(scale=10):
                header_html = gr.HTML(f"""
                    <div class="main-header">
                        <h1 style="color: #6b46c1; font-size: 2.5rem;">๐ŸŽจ AI Models Creativity Battle Arena</h1>
                        <p style="color: #805ad5; font-size: 1.2rem;">Test cutting-edge AI models in creative challenges</p>
                        <p style="color: #9f7aea; font-size: 1rem;">GPT-5 vs jetXA vs Gemini 2.5 Pro vs Claude Opus 4.1</p>
                    </div>
                """)
            with gr.Column(scale=1):
                language_select = gr.Dropdown(
                    choices=[("English", "en"), ("ํ•œ๊ตญ์–ด", "ko")],
                    value="en",
                    label="Language",
                    interactive=True,
                    elem_classes="category-select"
                )
        
        with gr.Tabs(elem_classes="tab-nav") as tabs:
            # Battle Arena Tab
            with gr.TabItem("โš”๏ธ Battle Arena", id="battle_tab") as battle_tab:
                with gr.Row():
                    with gr.Column(scale=1):
                        category_select = gr.Dropdown(
                            choices=[
                                ("๐ŸŽฒ Random", "random"),
                                ("๐Ÿ“š Storytelling", "storytelling"),
                                ("๐Ÿ’ก Innovation", "innovation"),
                                ("๐Ÿ’ผ Business", "business")
                            ],
                            value="random",
                            label="Select Category",
                            interactive=True,
                            elem_classes="category-select"
                        )
                        
                        custom_prompt_accordion = gr.Accordion("โœ๏ธ Custom Challenge (Optional)", open=False)
                        with custom_prompt_accordion:
                            custom_prompt_input = gr.Textbox(
                                label="",
                                placeholder="Enter your creative challenge...",
                                lines=3
                            )
                        
                        new_battle_btn = gr.Button(
                            "๐ŸŽฒ Start New Battle",
                            variant="primary",
                            size="lg",
                            elem_classes="vote-button"
                        )
                    
                    with gr.Column(scale=3):
                        prompt_display = gr.Markdown("")
                
                with gr.Row():
                    with gr.Column():
                        model_a_label = gr.Markdown("### ๐Ÿ…ฐ๏ธ Model A")
                        response_a = gr.Markdown(
                            "", 
                            elem_classes=["response-container", "markdown-text"],
                            sanitize_html=False,
                            line_breaks=True,
                            latex_delimiters=[
                                {"left": "$", "right": "$", "display": True},
                                {"left": "$", "right": "$", "display": False}
                            ]
                        )
                        model_a_reveal = gr.Textbox(label="Model Identity", visible=False)
                    
                    with gr.Column():
                        model_b_label = gr.Markdown("### ๐Ÿ…ฑ๏ธ Model B")
                        response_b = gr.Markdown(
                            "", 
                            elem_classes=["response-container", "markdown-text"],
                            sanitize_html=False,
                            line_breaks=True,
                            latex_delimiters=[
                                {"left": "$", "right": "$", "display": True},
                                {"left": "$", "right": "$", "display": False}
                            ]
                        )
                        model_b_reveal = gr.Textbox(label="Model Identity", visible=False)
                
                with gr.Row():
                    vote_a_btn = gr.Button("๐Ÿ…ฐ๏ธ Model A is more creative", size="lg", variant="primary", elem_classes="vote-button")
                    vote_b_btn = gr.Button("๐Ÿ…ฑ๏ธ Model B is more creative", size="lg", variant="primary", elem_classes="vote-button")
                
                vote_result = gr.Markdown("")
                battle_state = gr.State({})
            
            # Leaderboard Tab
            with gr.TabItem("๐Ÿ† Leaderboard", id="leaderboard_tab") as leaderboard_tab:
                leaderboard_title = gr.Markdown("## ๐Ÿ† AI Models Leaderboard")
                
                category_filter = gr.Radio(
                    choices=[
                        ("Overall", "overall"),
                        ("Storytelling", "storytelling"),
                        ("Innovation", "innovation"),
                        ("Business", "business")
                    ],
                    value="overall",
                    label="Category Filter",
                    elem_classes="category-select"
                )
                
                leaderboard_display = gr.Dataframe(
                    headers=["Rank", "Model", "Overall", "Story", "Innovation", "Business", "Battles", "Win%", "ELO"],
                    datatype=["number", "str", "number", "number", "number", "number", "number", "number", "number"]
                )
                
                refresh_btn = gr.Button("๐Ÿ”„ Refresh", variant="secondary")
        
        # Footer
        footer_html = gr.HTML("""
            <div class="footer">
                <p>Testing GPT-5, jetXA, Gemini 2.5 Pro, and Claude Opus 4.1 in creative challenges | Contact: arxivgpt@gmail.com</p>
            </div>
        """)
        
        # Event handlers with streaming support
        def start_battle_stream(category, custom_prompt, lang):
            # Clear cache for fresh responses if needed
            arena.llm.clear_cache()
            
            battle_info = arena.start_new_battle_stream(category, custom_prompt, lang)
            
            ui = UI_TEXT[lang]
            category_display = ui["categories"].get(battle_info['category'], battle_info['category'])
            
            prompt_text = f"""
{ui['challenge_task']}

**{ui['category']}**: {category_display}

**{ui['prompt']}**:
> {battle_info['prompt']}
"""
            
            # Initialize with loading state
            initial_response = ui['generating']
            
            # Start streaming in separate threads
            response_a_queue = queue.Queue()
            response_b_queue = queue.Queue()
            response_a_final = ""
            response_b_final = ""
            done_a = False
            done_b = False
            
            def stream_model_a():
                nonlocal response_a_final, done_a
                try:
                    for chunk in arena.llm.generate_response_stream(
                        battle_info['models'][0], 
                        battle_info['prompt'], 
                        lang
                    ):
                        # chunk is already accumulated text
                        response_a_queue.put(('update', chunk))  # Add type marker
                        response_a_final = chunk
                    battle_info['battle'].response_a = response_a_final
                except Exception as e:
                    print(f"Error in stream_model_a: {e}")
                    response_a_final = arena.llm._generate_fallback(
                        battle_info['models'][0], 
                        battle_info['prompt'], 
                        lang
                    )
                    response_a_queue.put(('update', response_a_final))
                    battle_info['battle'].response_a = response_a_final
                finally:
                    response_a_queue.put(('done', None))  # Signal completion
                    done_a = True
            
            def stream_model_b():
                nonlocal response_b_final, done_b
                try:
                    for chunk in arena.llm.generate_response_stream(
                        battle_info['models'][1], 
                        battle_info['prompt'], 
                        lang
                    ):
                        # chunk is already accumulated text
                        response_b_queue.put(('update', chunk))  # Add type marker
                        response_b_final = chunk
                    battle_info['battle'].response_b = response_b_final
                except Exception as e:
                    print(f"Error in stream_model_b: {e}")
                    response_b_final = arena.llm._generate_fallback(
                        battle_info['models'][1], 
                        battle_info['prompt'], 
                        lang
                    )
                    response_b_queue.put(('update', response_b_final))
                    battle_info['battle'].response_b = response_b_final
                finally:
                    response_b_queue.put(('done', None))  # Signal completion
                    done_b = True
            
            thread_a = threading.Thread(target=stream_model_a)
            thread_b = threading.Thread(target=stream_model_b)
            
            thread_a.start()
            thread_b.start()
            
            # Yield updates for both responses
            response_a_text = initial_response
            response_b_text = initial_response
            last_update_time = time.time()
            stream_a_done = False
            stream_b_done = False
            
            while not (stream_a_done and stream_b_done):
                updated = False
                current_time = time.time()
                
                # Process all updates from model A
                try:
                    while True:
                        msg_type, content = response_a_queue.get_nowait()
                        if msg_type == 'done':
                            stream_a_done = True
                        elif msg_type == 'update':
                            response_a_text = content
                            updated = True
                except queue.Empty:
                    pass
                
                # Process all updates from model B
                try:
                    while True:
                        msg_type, content = response_b_queue.get_nowait()
                        if msg_type == 'done':
                            stream_b_done = True
                        elif msg_type == 'update':
                            response_b_text = content
                            updated = True
                except queue.Empty:
                    pass
                
                # Always yield updates more frequently for better streaming effect
                if updated or (current_time - last_update_time) > 0.05:  # Update every 50ms
                    yield (
                        prompt_text,
                        response_a_text,
                        response_b_text,
                        gr.update(visible=False),
                        gr.update(visible=False),
                        "",
                        battle_info
                    )
                    last_update_time = current_time
                
                time.sleep(0.02)  # Smaller sleep for more responsive updates
            
            # Final update with complete responses
            yield (
                prompt_text,
                response_a_final if response_a_final else initial_response,
                response_b_final if response_b_final else initial_response,
                gr.update(visible=False),
                gr.update(visible=False),
                "",
                battle_info
            )
        
        def process_vote(choice, state, lang):
            if not state or 'battle' not in state:
                print("โŒ No battle in state")
                return (
                    gr.update(),
                    gr.update(),
                    "Error: No active battle"
                )
            
            # Ensure the battle object is properly set
            battle_obj = state['battle']
            arena.current_battle = battle_obj
            
            print(f"๐ŸŽฏ Processing vote: Choice={choice}, Battle ID={battle_obj.id}")
            
            # Process the vote
            result = arena.vote(choice)
            
            if "error" in result:
                return (
                    gr.update(),
                    gr.update(),
                    f"Error: {result['error']}"
                )
            
            ui = UI_TEXT[lang]
            
            winner_emoji = "๐Ÿ†" if result['winner'] == result['model_a'] else "๐Ÿฅˆ"
            loser_emoji = "๐Ÿฅˆ" if winner_emoji == "๐Ÿ†" else "๐Ÿ†"
            
            result_text = f"""
{ui['vote_complete']}

**{ui['winner']}**: {winner_emoji} **{result['winner']}**

**Model A**: {result['model_a']} {winner_emoji if choice == "A" else loser_emoji}  
**Model B**: {result['model_b']} {winner_emoji if choice == "B" else loser_emoji}

{ui['elo_updated']}
"""
            
            # Debug: Check database state after vote
            arena.db.debug_database_state()
            
            return (
                gr.update(value=result['model_a'], visible=True),
                gr.update(value=result['model_b'], visible=True),
                result_text
            )
        
        def update_leaderboard(category):
            df = arena.get_leaderboard(
                Category(category) if category != "overall" else None
            )
            return df[['rank', 'model_name', 'overall_score', 'storytelling_score', 
                      'innovation_score', 'business_score', 'total_battles', 'win_rate', 'elo_rating']]
        
        # Update UI when language changes
        language_select.change(
            fn=update_language,
            inputs=[language_select],
            outputs=[current_lang]
        ).then(
            fn=update_ui_text,
            inputs=[current_lang],
            outputs=[
                header_html,
                leaderboard_title,
                category_select,
                custom_prompt_accordion,
                custom_prompt_input,
                new_battle_btn,
                model_a_label,
                model_b_label,
                vote_a_btn,
                vote_b_btn,
                category_filter,
                refresh_btn,
                category_select,
                category_filter
            ]
        )
        
        # Connect events with streaming
        new_battle_btn.click(
            fn=start_battle_stream,
            inputs=[category_select, custom_prompt_input, current_lang],
            outputs=[prompt_display, response_a, response_b, model_a_reveal, model_b_reveal, vote_result, battle_state]
        )
        
        vote_a_btn.click(
            fn=lambda s, l: process_vote("A", s, l),
            inputs=[battle_state, current_lang],
            outputs=[model_a_reveal, model_b_reveal, vote_result]
        )
        
        vote_b_btn.click(
            fn=lambda s, l: process_vote("B", s, l),
            inputs=[battle_state, current_lang],
            outputs=[model_a_reveal, model_b_reveal, vote_result]
        )
        
        category_filter.change(
            fn=update_leaderboard,
            inputs=[category_filter],
            outputs=[leaderboard_display]
        )
        
        refresh_btn.click(
            fn=update_leaderboard,
            inputs=[category_filter],
            outputs=[leaderboard_display]
        )
        
        # Initialize on load
        app.load(
            fn=lambda: update_leaderboard("overall"),
            outputs=[leaderboard_display]
        )
    
    return app

# ==================== Main ====================
if __name__ == "__main__":
    print("="*50)
    print("๐Ÿš€ AI Models Creativity Battle Arena")
    print("="*50)
    print("\n๐Ÿ“‹ Environment Setup:")
    print("1. Set OPENAI_API_KEY for GPT-5")
    print("2. Set GEMINI_API_KEY for Gemini 2.5 Pro")
    print("3. Set ANTHROPIC_API_KEY for Claude Opus 4.1")
    print("4. jetXA will use 'aiqtech/tests' by default")
    print("5. Set HF_TOKEN for persistent data storage (REQUIRED)")
    print("6. Optional: Set HF_DATASET_NAME (default: ai_models_arena)")
    print("\nโš ๏ธ  Without HF_TOKEN, data will be lost on server restart!")
    print("\n" + "="*50 + "\n")
    
    # Check for required API keys
    if not os.getenv("HF_TOKEN"):
        print("โš ๏ธ  WARNING: HF_TOKEN not set - data will not persist!")
        print("Set it with: export HF_TOKEN='your_token_here'")
        print("")
    
    if not os.getenv("OPENAI_API_KEY"):
        print("โš ๏ธ  GPT-5: No API key found - will use fallback responses")
    
    if not os.getenv("GEMINI_API_KEY"):
        print("โš ๏ธ  Gemini: No API key found - will use fallback responses")
    
    if not os.getenv("ANTHROPIC_API_KEY"):
        print("โš ๏ธ  Claude: No API key found - will use fallback responses")
    
    print("\n๐ŸŽฏ Starting arena with 4 models: GPT-5, jetXA, Gemini 2.5 Pro, Claude Opus 4.1")
    print("="*50 + "\n")
    
    # Create app
    app = create_app()
    
    # Start periodic sync in background (optional)
    arena = CreativityArena()
    sync_thread = threading.Thread(target=lambda: periodic_sync(arena), daemon=True)
    sync_thread.start()
    print("โœ… Background sync thread started (every 30 seconds)")
    
    # Launch app
    app.launch()