File size: 12,124 Bytes
0987091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import json
from typing import List, Dict, Tuple
import time

# ์ฃผ์˜: ์ด๊ฒƒ์€ SEAL ๋…ผ๋ฌธ์˜ ๊ฐœ๋…์„ ๋ณด์—ฌ์ฃผ๋Š” ๋‹จ์ˆœํ™”๋œ ๋ฐ๋ชจ์ž…๋‹ˆ๋‹ค.
# ์‹ค์ œ ๊ตฌํ˜„์—์„œ๋Š” LoRA ํŒŒ์ธํŠœ๋‹๊ณผ ์ „์ฒด RL ๋ฃจํ”„๊ฐ€ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.

class SEALDemo:
    def __init__(self):
        # ์‹ค์ œ๋กœ๋Š” Qwen2.5-7B๋ฅผ ์‚ฌ์šฉํ•˜์ง€๋งŒ, ๋ฐ๋ชจ์—์„œ๋Š” ์ž‘์€ ๋ชจ๋ธ ์‚ฌ์šฉ
        self.model_name = "gpt2"
        print("Loading model...")
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        self.model = AutoModelForCausalLM.from_pretrained(self.model_name)
        self.tokenizer.pad_token = self.tokenizer.eos_token
        
        # ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์œ„ํ•œ ๊ฐ€์ƒ์˜ self-edit ํšจ๊ณผ
        self.adaptation_history = []
        
    def generate_self_edit(self, passage: str, edit_type: str = "implications") -> str:
        """์ฃผ์–ด์ง„ passage์— ๋Œ€ํ•œ self-edit ์ƒ์„ฑ"""
        
        prompts = {
            "implications": f"Let's read the following passage and produce a list of implications derived directly or indirectly from the content.\n\nPassage:\n{passage}\n\nImplications:\n",
            "rewrite": f"Let's read the following passage and rewrite it in a few different ways, each one separated by a newline.\n\nPassage:\n{passage}\n\nRewritten passages:\n",
            "qa": f"Let's read the following passage and rewrite it in a question-answer format.\n\nPassage:\n{passage}\n\nQuestion 1:\n"
        }
        
        prompt = prompts.get(edit_type, prompts["implications"])
        
        # ์‹ค์ œ ์ƒ์„ฑ (๋ฐ๋ชจ์šฉ์œผ๋กœ ๊ฐ„๋‹จํ•˜๊ฒŒ)
        inputs = self.tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
        
        with torch.no_grad():
            outputs = self.model.generate(
                inputs.input_ids,
                max_new_tokens=200,
                temperature=0.8,
                do_sample=True,
                top_p=0.9,
                pad_token_id=self.tokenizer.eos_token_id
            )
        
        generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
        self_edit = generated_text[len(prompt):].strip()
        
        # ๋ฐ๋ชจ๋ฅผ ์œ„ํ•œ ์˜ˆ์‹œ self-edit ์ถ”๊ฐ€ (์‹ค์ œ ๋ชจ๋ธ์ด ์ƒ์„ฑํ•˜์ง€ ๋ชปํ•  ๊ฒฝ์šฐ๋ฅผ ๋Œ€๋น„)
        if len(self_edit) < 50:
            if edit_type == "implications":
                self_edit = """1. The information in this passage can be used to answer specific questions about the content.
2. Understanding this passage requires identifying key facts and their relationships.
3. The main concepts should be broken down into smaller, learnable components.
4. Each fact in the passage has potential implications for related topics.
5. This content can be restructured to improve learning and retention."""
            elif edit_type == "rewrite":
                self_edit = f"""Version 1: {passage[:100]}...
Version 2: The key information from this passage includes...
Version 3: In summary, this passage discusses..."""
            else:  # qa
                self_edit = """Question 1: What is the main topic of this passage?
Answer: The passage discusses...

Question 2: What are the key facts mentioned?
Answer: The key facts include..."""
        
        return self_edit
    
    def simulate_adaptation(self, passage: str, self_edit: str) -> Dict[str, float]:
        """self-edit๋ฅผ ์‚ฌ์šฉํ•œ ์ ์‘ ๊ณผ์ • ์‹œ๋ฎฌ๋ ˆ์ด์…˜"""
        
        # ์‹ค์ œ๋กœ๋Š” LoRA ํŒŒ์ธํŠœ๋‹์„ ์ˆ˜ํ–‰ํ•˜์ง€๋งŒ, ์—ฌ๊ธฐ์„œ๋Š” ์‹œ๋ฎฌ๋ ˆ์ด์…˜
        adaptation_score = len(self_edit.split('\n')) * 0.1  # ๋” ๋งŽ์€ implications = ๋” ๋‚˜์€ ์ ์‘
        
        # ์ ์‘ ๊ธฐ๋ก ์ €์žฅ
        self.adaptation_history.append({
            "passage": passage[:100] + "...",
            "self_edit_lines": len(self_edit.split('\n')),
            "adaptation_score": adaptation_score
        })
        
        return {
            "original_performance": 0.33,  # ๋…ผ๋ฌธ์˜ baseline
            "adapted_performance": min(0.33 + adaptation_score, 0.47),  # ๋…ผ๋ฌธ์˜ SEAL ์„ฑ๋Šฅ
            "improvement": min(adaptation_score, 0.14)
        }
    
    def answer_question(self, question: str, passage: str, use_adaptation: bool) -> Tuple[str, float]:
        """์งˆ๋ฌธ์— ๋Œ€ํ•œ ๋‹ต๋ณ€ ์ƒ์„ฑ (์ ์‘ ์ „/ํ›„ ๋น„๊ต)"""
        
        if use_adaptation:
            # ์ ์‘๋œ ๋ชจ๋ธ๋กœ ๋‹ต๋ณ€ (์‹œ๋ฎฌ๋ ˆ์ด์…˜)
            prompt = f"Based on the learned information, answer this question concisely:\n\nQuestion: {question}\nAnswer:"
            confidence = 0.8
        else:
            # ์›๋ณธ ๋ชจ๋ธ๋กœ ๋‹ต๋ณ€
            prompt = f"Answer this question:\n\nQuestion: {question}\nAnswer:"
            confidence = 0.3
        
        inputs = self.tokenizer(prompt, return_tensors="pt", max_length=256, truncation=True)
        
        with torch.no_grad():
            outputs = self.model.generate(
                inputs.input_ids,
                max_new_tokens=50,
                temperature=0.7,
                do_sample=True,
                pad_token_id=self.tokenizer.eos_token_id
            )
        
        answer = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
        answer = answer[len(prompt):].strip()
        
        # ๋‹ต๋ณ€์ด ๋„ˆ๋ฌด ์งง์œผ๋ฉด ๊ธฐ๋ณธ ๋‹ต๋ณ€ ์ œ๊ณต
        if len(answer) < 10:
            answer = "The model cannot provide a confident answer without adaptation." if not use_adaptation else "Based on the adapted knowledge, the answer is [specific to the passage content]."
        
        return answer, confidence

# ์ „์—ญ ์ธ์Šคํ„ด์Šค
demo = SEALDemo()

def process_seal_adaptation(passage, edit_type, question):
    """SEAL ์ ์‘ ํ”„๋กœ์„ธ์Šค ์‹คํ–‰"""
    
    if not passage or not question:
        return "Please provide both a passage and a question.", "", {}, "", ""
    
    # 1. Self-edit ์ƒ์„ฑ
    self_edit = demo.generate_self_edit(passage, edit_type)
    
    # 2. ์ ์‘ ์‹œ๋ฎฌ๋ ˆ์ด์…˜
    adaptation_results = demo.simulate_adaptation(passage, self_edit)
    
    # 3. ์งˆ๋ฌธ์— ๋Œ€ํ•œ ๋‹ต๋ณ€ (์ ์‘ ์ „/ํ›„)
    answer_before, conf_before = demo.answer_question(question, passage, use_adaptation=False)
    answer_after, conf_after = demo.answer_question(question, passage, use_adaptation=True)
    
    # ๊ฒฐ๊ณผ ํฌ๋งทํŒ…
    results_text = f"""๐Ÿ“Š Adaptation Results:
    
Original Model Performance: {adaptation_results['original_performance']:.1%}
Adapted Model Performance: {adaptation_results['adapted_performance']:.1%}
Improvement: +{adaptation_results['improvement']:.1%}

๐Ÿ“ˆ Answer Confidence:
Before Adaptation: {conf_before:.1%}
After Adaptation: {conf_after:.1%}"""
    
    return self_edit, results_text, adaptation_results, answer_before, answer_after

def visualize_rl_process():
    """RL ํ›ˆ๋ จ ๊ณผ์ • ์‹œ๊ฐํ™” (๋…ผ๋ฌธ Figure 4 ์žฌํ˜„)"""
    
    # ๋…ผ๋ฌธ์˜ RL iteration ๊ฒฐ๊ณผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜
    iterations = [0, 1, 2]
    performance = [33.5, 43.7, 47.0]  # ๋…ผ๋ฌธ์˜ ์‹ค์ œ ์ˆ˜์น˜
    
    import matplotlib.pyplot as plt
    
    fig, ax = plt.subplots(figsize=(8, 6))
    
    # ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋“ค์˜ ์„ฑ๋Šฅ
    methods = {
        'Base Model': 32.7,
        'Raw Passage': 33.5,
        'Base Model Synthetic': 39.7,
        'GPT-4.1 Synthetic': 46.3,
    }
    
    # ์ˆ˜ํ‰์„ ์œผ๋กœ baseline ํ‘œ์‹œ
    for method, score in methods.items():
        ax.axhline(y=score, linestyle='--', alpha=0.5, label=method)
    
    # SEAL ์„ฑ๋Šฅ ๊ณก์„ 
    ax.plot(iterations, performance, 'ro-', linewidth=2, markersize=8, label='SEAL')
    
    ax.set_xlabel('ReSTEM RL Training Iterations')
    ax.set_ylabel('Knowledge Incorporation (%)')
    ax.set_title('Single-Passage Knowledge Incorporation Performance')
    ax.legend()
    ax.grid(True, alpha=0.3)
    ax.set_ylim(30, 50)
    
    return fig

# Gradio ์ธํ„ฐํŽ˜์ด์Šค
with gr.Blocks(title="SEAL: Self-Adapting Language Models Demo") as interface:
    gr.Markdown("""
    # ๐Ÿ”„ SEAL: Self-Adapting Language Models Demo
    
    This demo illustrates the key concepts from the paper "Self-Adapting Language Models" (Zweiger et al., 2025).
    SEAL enables LLMs to self-adapt by generating their own finetuning data and update directives.
    
    ## ๐Ÿ“š How it works:
    1. **Input a passage** containing new information
    2. **Model generates self-edits** (implications, rewrites, or Q&A pairs)
    3. **Simulated adaptation** using the self-edits
    4. **Compare performance** before and after adaptation
    """)
    
    with gr.Tab("Knowledge Incorporation"):
        with gr.Row():
            with gr.Column():
                passage_input = gr.Textbox(
                    label="๐Ÿ“„ Input Passage",
                    placeholder="Enter a passage with factual information...",
                    lines=8,
                    value="The Apollo program faced significant challenges before achieving its goal. Kennedy's science advisor, Jerome Wiesner, initially opposed manned spacecraft flights. Despite internal disagreements at NASA, the program eventually succeeded in landing humans on the Moon in 1969."
                )
                
                edit_type = gr.Radio(
                    choices=["implications", "rewrite", "qa"],
                    value="implications",
                    label="Self-Edit Type"
                )
                
                question_input = gr.Textbox(
                    label="โ“ Test Question",
                    placeholder="Enter a question about the passage...",
                    value="Who was Kennedy's science advisor?"
                )
                
                adapt_btn = gr.Button("๐Ÿš€ Run SEAL Adaptation", variant="primary")
            
            with gr.Column():
                self_edit_output = gr.Textbox(
                    label="๐Ÿค– Generated Self-Edit",
                    lines=8
                )
                
                results_output = gr.Textbox(
                    label="๐Ÿ“Š Adaptation Results",
                    lines=6
                )
        
        with gr.Row():
            answer_before = gr.Textbox(
                label="โŒ Answer Before Adaptation",
                lines=2
            )
            answer_after = gr.Textbox(
                label="โœ… Answer After Adaptation",
                lines=2
            )
        
        adapt_btn.click(
            process_seal_adaptation,
            inputs=[passage_input, edit_type, question_input],
            outputs=[self_edit_output, results_output, gr.State(), answer_before, answer_after]
        )
    
    with gr.Tab("RL Training Visualization"):
        gr.Markdown("""
        ## ๐Ÿ“ˆ Reinforcement Learning Training Process
        
        This visualization shows how SEAL improves over RL iterations, eventually surpassing even GPT-4.1 synthetic data.
        """)
        
        plot_btn = gr.Button("Generate Performance Plot")
        plot_output = gr.Plot()
        
        plot_btn.click(visualize_rl_process, outputs=plot_output)
    
    with gr.Tab("Paper Overview"):
        gr.Markdown("""
        ## ๐Ÿ“‘ Key Contributions
        
        1. **Self-Edits**: Models generate their own training data in natural language
        2. **RL Training**: Use reinforcement learning to optimize self-edit generation
        3. **Two Applications**:
           - Knowledge Incorporation: 47.0% accuracy (vs 33.5% baseline)
           - Few-shot Learning: 72.5% success rate on ARC tasks
        
        ## ๐Ÿ”ง Technical Details
        
        - **Base Models**: Qwen2.5-7B (knowledge), Llama-3.2-1B (few-shot)
        - **Optimization**: ReSTEM (rejection sampling + SFT)
        - **Adaptation**: LoRA for efficient weight updates
        - **Reward Signal**: Downstream task performance
        
        ## โš ๏ธ Demo Limitations
        
        This demo simulates the core concepts but doesn't perform actual LoRA finetuning or full RL training due to computational constraints.
        """)

if __name__ == "__main__":
    interface.launch()