File size: 12,815 Bytes
2409829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
use super::*;
use std::fmt::Write;
use utils::format_point;
/// Functionality relating to core `Bezier` operations, such as constructors and `abs_diff_eq`.
impl Bezier {
// TODO: Consider removing this function
/// Create a linear bezier using the provided coordinates as the start and end points.
pub fn from_linear_coordinates(x1: f64, y1: f64, x2: f64, y2: f64) -> Self {
Bezier {
start: DVec2::new(x1, y1),
handles: BezierHandles::Linear,
end: DVec2::new(x2, y2),
}
}
/// Create a linear bezier using the provided DVec2s as the start and end points.
/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#bezier/constructor/solo" title="Constructor Demo"></iframe>
pub fn from_linear_dvec2(p1: DVec2, p2: DVec2) -> Self {
Bezier {
start: p1,
handles: BezierHandles::Linear,
end: p2,
}
}
// TODO: Consider removing this function
/// Create a quadratic bezier using the provided coordinates as the start, handle, and end points.
pub fn from_quadratic_coordinates(x1: f64, y1: f64, x2: f64, y2: f64, x3: f64, y3: f64) -> Self {
Bezier {
start: DVec2::new(x1, y1),
handles: BezierHandles::Quadratic { handle: DVec2::new(x2, y2) },
end: DVec2::new(x3, y3),
}
}
/// Create a quadratic bezier using the provided DVec2s as the start, handle, and end points.
pub fn from_quadratic_dvec2(p1: DVec2, p2: DVec2, p3: DVec2) -> Self {
Bezier {
start: p1,
handles: BezierHandles::Quadratic { handle: p2 },
end: p3,
}
}
// TODO: Consider removing this function
/// Create a cubic bezier using the provided coordinates as the start, handles, and end points.
#[allow(clippy::too_many_arguments)]
pub fn from_cubic_coordinates(x1: f64, y1: f64, x2: f64, y2: f64, x3: f64, y3: f64, x4: f64, y4: f64) -> Self {
Bezier {
start: DVec2::new(x1, y1),
handles: BezierHandles::Cubic {
handle_start: DVec2::new(x2, y2),
handle_end: DVec2::new(x3, y3),
},
end: DVec2::new(x4, y4),
}
}
/// Create a cubic bezier using the provided DVec2s as the start, handles, and end points.
pub fn from_cubic_dvec2(p1: DVec2, p2: DVec2, p3: DVec2, p4: DVec2) -> Self {
Bezier {
start: p1,
handles: BezierHandles::Cubic { handle_start: p2, handle_end: p3 },
end: p4,
}
}
/// Create a quadratic bezier curve that goes through 3 points, where the middle point will be at the corresponding position `t` on the curve.
/// - `t` - A representation of how far along the curve the provided point should occur at. The default value is 0.5.
///
/// Note that when `t = 0` or `t = 1`, the expectation is that the `point_on_curve` should be equal to `start` and `end` respectively.
/// In these cases, if the provided values are not equal, this function will use the `point_on_curve` as the `start`/`end` instead.
/// <iframe frameBorder="0" width="100%" height="375px" src="https://graphite.rs/libraries/bezier-rs#bezier/bezier-through-points/solo" title="Through Points Demo"></iframe>
pub fn quadratic_through_points(start: DVec2, point_on_curve: DVec2, end: DVec2, t: Option<f64>) -> Self {
let t = t.unwrap_or(DEFAULT_T_VALUE);
if t == 0. {
return Bezier::from_quadratic_dvec2(point_on_curve, point_on_curve, end);
}
if t == 1. {
return Bezier::from_quadratic_dvec2(start, point_on_curve, point_on_curve);
}
let [a, _, _] = utils::compute_abc_for_quadratic_through_points(start, point_on_curve, end, t);
Bezier::from_quadratic_dvec2(start, a, end)
}
/// Create a cubic bezier curve that goes through 3 points, where the middle point will be at the corresponding position `t` on the curve.
/// - `t` - A representation of how far along the curve the provided point should occur at. The default value is 0.5.
///
/// Note that when `t = 0` or `t = 1`, the expectation is that the `point_on_curve` should be equal to `start` and `end` respectively.
/// In these cases, if the provided values are not equal, this function will use the `point_on_curve` as the `start`/`end` instead.
/// - `midpoint_separation` - A representation of how wide the resulting curve will be around `t` on the curve. This parameter designates the distance between the `e1` and `e2` defined in [the projection identity section](https://pomax.github.io/bezierinfo/#abc) of Pomax's bezier curve primer. It is an optional parameter and the default value is the distance between the points `B` and `C` defined in the primer.
pub fn cubic_through_points(start: DVec2, point_on_curve: DVec2, end: DVec2, t: Option<f64>, midpoint_separation: Option<f64>) -> Self {
let t = t.unwrap_or(DEFAULT_T_VALUE);
if t == 0. {
return Bezier::from_cubic_dvec2(point_on_curve, point_on_curve, end, end);
}
if t == 1. {
return Bezier::from_cubic_dvec2(start, start, point_on_curve, point_on_curve);
}
let [a, b, c] = utils::compute_abc_for_cubic_through_points(start, point_on_curve, end, t);
let midpoint_separation = midpoint_separation.unwrap_or_else(|| b.distance(c));
let distance_between_start_and_end = (end - start) / (start.distance(end));
let e1 = b - (distance_between_start_and_end * midpoint_separation);
let e2 = b + (distance_between_start_and_end * midpoint_separation * (1. - t) / t);
// TODO: these functions can be changed to helpers, but need to come up with an appropriate name first
let v1 = (e1 - t * a) / (1. - t);
let v2 = (e2 - (1. - t) * a) / t;
let handle_start = (v1 - (1. - t) * start) / t;
let handle_end = (v2 - t * end) / (1. - t);
Bezier::from_cubic_dvec2(start, handle_start, handle_end, end)
}
/// Return the string argument used to create a curve in an SVG `path`, excluding the start point.
pub fn svg_curve_argument(&self) -> String {
let mut out = String::new();
self.write_curve_argument(&mut out).unwrap();
out
}
/// Write the curve argument to the string
pub fn write_curve_argument(&self, svg: &mut String) -> std::fmt::Result {
match self.handles {
BezierHandles::Linear => svg.push_str(SVG_ARG_LINEAR),
BezierHandles::Quadratic { handle } => {
format_point(svg, SVG_ARG_QUADRATIC, handle.x, handle.y)?;
}
BezierHandles::Cubic { handle_start, handle_end } => {
format_point(svg, SVG_ARG_CUBIC, handle_start.x, handle_start.y)?;
format_point(svg, " ", handle_end.x, handle_end.y)?;
}
}
format_point(svg, " ", self.end.x, self.end.y)
}
/// Return the string argument used to create the lines connecting handles to endpoints in an SVG `path`
pub(crate) fn svg_handle_line_argument(&self) -> Option<String> {
let mut result = String::new();
match self.handles {
BezierHandles::Linear => {}
BezierHandles::Quadratic { handle } => {
let _ = format_point(&mut result, SVG_ARG_MOVE, self.start.x, self.start.y);
let _ = format_point(&mut result, SVG_ARG_LINEAR, handle.x, handle.y);
let _ = format_point(&mut result, SVG_ARG_MOVE, self.end.x, self.end.y);
let _ = format_point(&mut result, SVG_ARG_LINEAR, handle.x, handle.y);
}
BezierHandles::Cubic { handle_start, handle_end } => {
let _ = format_point(&mut result, SVG_ARG_MOVE, self.start.x, self.start.y);
let _ = format_point(&mut result, SVG_ARG_LINEAR, handle_start.x, handle_start.y);
let _ = format_point(&mut result, SVG_ARG_MOVE, self.end.x, self.end.y);
let _ = format_point(&mut result, SVG_ARG_LINEAR, handle_end.x, handle_end.y);
}
}
(!result.is_empty()).then_some(result)
}
/// Appends to the `svg` mutable string with an SVG shape representation of the curve.
pub fn curve_to_svg(&self, svg: &mut String, attributes: String) {
let _ = write!(svg, r#"<path d="{SVG_ARG_MOVE}{} {} {}" {}/>"#, self.start.x, self.start.y, self.svg_curve_argument(), attributes);
}
/// Appends to the `svg` mutable string with an SVG shape representation of the handle lines.
pub fn handle_lines_to_svg(&self, svg: &mut String, attributes: String) {
let _ = write!(svg, r#"<path d="{}" {}/>"#, self.svg_handle_line_argument().unwrap_or_default(), attributes);
}
/// Appends to the `svg` mutable string with an SVG shape representation of the anchors.
pub fn anchors_to_svg(&self, svg: &mut String, attributes: String) {
let _ = write!(
svg,
r#"<circle cx="{}" cy="{}" {attributes}/><circle cx="{}" cy="{}" {attributes}/>"#,
self.start.x, self.start.y, self.end.x, self.end.y
);
}
/// Appends to the `svg` mutable string with an SVG shape representation of the handles.
pub fn handles_to_svg(&self, svg: &mut String, attributes: String) {
if let BezierHandles::Quadratic { handle } = self.handles {
let _ = write!(svg, r#"<circle cx="{}" cy="{}" {attributes}/>"#, handle.x, handle.y);
} else if let BezierHandles::Cubic { handle_start, handle_end } = self.handles {
let _ = write!(
svg,
r#"<circle cx="{}" cy="{}" {attributes}/><circle cx="{}" cy="{}" {attributes}/>"#,
handle_start.x, handle_start.y, handle_end.x, handle_end.y
);
};
}
/// Appends to the `svg` mutable string with an SVG shape representation that includes the curve, the handle lines, the anchors, and the handles.
pub fn to_svg(&self, svg: &mut String, curve_attributes: String, anchor_attributes: String, handle_attributes: String, handle_line_attributes: String) {
if !curve_attributes.is_empty() {
self.curve_to_svg(svg, curve_attributes);
}
if !handle_line_attributes.is_empty() {
self.handle_lines_to_svg(svg, handle_line_attributes);
}
if !anchor_attributes.is_empty() {
self.anchors_to_svg(svg, anchor_attributes);
}
if !handle_attributes.is_empty() {
self.handles_to_svg(svg, handle_attributes);
}
}
/// Returns true if the corresponding points of the two `Bezier`s are within the provided absolute value difference from each other.
/// The points considered includes the start, end, and any relevant handles.
pub fn abs_diff_eq(&self, other: &Bezier, max_abs_diff: f64) -> bool {
let a = if self.is_linear() { Self::from_linear_dvec2(self.start, self.end) } else { *self };
let b = if other.is_linear() { Self::from_linear_dvec2(other.start, other.end) } else { *other };
let self_points = a.get_points().collect::<Vec<DVec2>>();
let other_points = b.get_points().collect::<Vec<DVec2>>();
self_points.len() == other_points.len() && self_points.into_iter().zip(other_points).all(|(a, b)| a.abs_diff_eq(b, max_abs_diff))
}
/// Returns true if the start, end and handles of the Bezier are all at the same location
pub fn is_point(&self) -> bool {
let start = self.start();
self.get_points().all(|point| point.abs_diff_eq(start, MAX_ABSOLUTE_DIFFERENCE))
}
/// Returns true if the Bezier curve is equivalent to a line.
///
/// **NOTE**: This is different from simply checking if the handle is [`BezierHandles::Linear`]. A [`Quadratic`](BezierHandles::Quadratic) or [`Cubic`](BezierHandles::Cubic) Bezier curve can also be a line if the handles are colinear to the start and end points. Therefore if the handles exceed the start and end point, it will still be considered as a line.
pub fn is_linear(&self) -> bool {
let is_colinear = |a: DVec2, b: DVec2, c: DVec2| -> bool { ((b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x)).abs() < MAX_ABSOLUTE_DIFFERENCE };
match self.handles {
BezierHandles::Linear => true,
BezierHandles::Quadratic { handle } => is_colinear(self.start, handle, self.end),
BezierHandles::Cubic { handle_start, handle_end } => is_colinear(self.start, handle_start, self.end) && is_colinear(self.start, handle_end, self.end),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::compare::compare_points;
use crate::utils::TValue;
#[test]
fn test_quadratic_from_points() {
let p1 = DVec2::new(30., 50.);
let p2 = DVec2::new(140., 30.);
let p3 = DVec2::new(160., 170.);
let bezier1 = Bezier::quadratic_through_points(p1, p2, p3, None);
assert!(compare_points(bezier1.evaluate(TValue::Parametric(0.5)), p2));
let bezier2 = Bezier::quadratic_through_points(p1, p2, p3, Some(0.8));
assert!(compare_points(bezier2.evaluate(TValue::Parametric(0.8)), p2));
let bezier3 = Bezier::quadratic_through_points(p1, p2, p3, Some(0.));
assert!(compare_points(bezier3.evaluate(TValue::Parametric(0.)), p2));
}
#[test]
fn test_cubic_through_points() {
let p1 = DVec2::new(30., 30.);
let p2 = DVec2::new(60., 140.);
let p3 = DVec2::new(160., 160.);
let bezier1 = Bezier::cubic_through_points(p1, p2, p3, Some(0.3), Some(10.));
assert!(compare_points(bezier1.evaluate(TValue::Parametric(0.3)), p2));
let bezier2 = Bezier::cubic_through_points(p1, p2, p3, Some(0.8), Some(91.7));
assert!(compare_points(bezier2.evaluate(TValue::Parametric(0.8)), p2));
let bezier3 = Bezier::cubic_through_points(p1, p2, p3, Some(0.), Some(91.7));
assert!(compare_points(bezier3.evaluate(TValue::Parametric(0.)), p2));
}
}
|