File size: 15,585 Bytes
2409829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
use super::*;
use crate::utils::{TValue, TValueType};
/// Functionality relating to looking up properties of the `Bezier` or points along the `Bezier`.
impl Bezier {
/// Convert a euclidean distance ratio along the `Bezier` curve to a parametric `t`-value.
pub fn euclidean_to_parametric(&self, ratio: f64, error: f64) -> f64 {
let total_length = self.length(None);
self.euclidean_to_parametric_with_total_length(ratio, error, total_length)
}
/// Convert a euclidean distance ratio along the `Bezier` curve to a parametric `t`-value.
/// For performance reasons, this version of the [`euclidean_to_parametric`] function allows the caller to
/// provide the total length of the curve so it doesn't have to be calculated every time the function is called.
pub fn euclidean_to_parametric_with_total_length(&self, euclidean_t: f64, error: f64, total_length: f64) -> f64 {
if euclidean_t < error {
return 0.;
}
if 1. - euclidean_t < error {
return 1.;
}
match self.handles {
BezierHandles::Linear => euclidean_t,
BezierHandles::Quadratic { handle } => {
// Use Casteljau subdivision, noting that the length is more than the straight line distance from start to end but less than the straight line distance through the handles
fn recurse(a0: DVec2, a1: DVec2, a2: DVec2, level: u8, desired_len: f64) -> (f64, f64) {
let lower = a0.distance(a2);
let upper = a0.distance(a1) + a1.distance(a2);
if level >= 8 {
let approx_len = (lower + upper) / 2.;
return (approx_len, desired_len / approx_len);
}
let b1 = 0.5 * (a0 + a1);
let c1 = 0.5 * (a1 + a2);
let b2 = 0.5 * (b1 + c1);
let (first_len, t) = recurse(a0, b1, b2, level + 1, desired_len);
if first_len > desired_len {
return (first_len, t * 0.5);
}
let (second_len, t) = recurse(b2, c1, a2, level + 1, desired_len - first_len);
(first_len + second_len, t * 0.5 + 0.5)
}
recurse(self.start, handle, self.end, 0, total_length * euclidean_t).1
}
BezierHandles::Cubic { handle_start, handle_end } => {
// Use Casteljau subdivision, noting that the length is more than the straight line distance from start to end but less than the straight line distance through the handles
fn recurse(a0: DVec2, a1: DVec2, a2: DVec2, a3: DVec2, level: u8, desired_len: f64) -> (f64, f64) {
let lower = a0.distance(a3);
let upper = a0.distance(a1) + a1.distance(a2) + a2.distance(a3);
if level >= 8 {
let approx_len = (lower + upper) / 2.;
return (approx_len, desired_len / approx_len);
}
let b1 = 0.5 * (a0 + a1);
let t0 = 0.5 * (a1 + a2);
let c1 = 0.5 * (a2 + a3);
let b2 = 0.5 * (b1 + t0);
let c2 = 0.5 * (t0 + c1);
let b3 = 0.5 * (b2 + c2);
let (first_len, t) = recurse(a0, b1, b2, b3, level + 1, desired_len);
if first_len > desired_len {
return (first_len, t * 0.5);
}
let (second_len, t) = recurse(b3, c2, c1, a3, level + 1, desired_len - first_len);
(first_len + second_len, t * 0.5 + 0.5)
}
recurse(self.start, handle_start, handle_end, self.end, 0, total_length * euclidean_t).1
}
}
.clamp(0., 1.)
}
/// Convert a [TValue] to a parametric `t`-value.
pub(crate) fn t_value_to_parametric(&self, t: TValue) -> f64 {
match t {
TValue::Parametric(t) => {
assert!((0.0..=1.).contains(&t));
t
}
TValue::Euclidean(t) => {
assert!((0.0..=1.).contains(&t));
self.euclidean_to_parametric(t, DEFAULT_EUCLIDEAN_ERROR_BOUND)
}
TValue::EuclideanWithinError { t, error } => {
assert!((0.0..=1.).contains(&t));
self.euclidean_to_parametric(t, error)
}
}
}
/// Calculate the point on the curve based on the `t`-value provided.
pub(crate) fn unrestricted_parametric_evaluate(&self, t: f64) -> DVec2 {
// Basis code based off of pseudocode found here: <https://pomax.github.io/bezierinfo/#explanation>.
let t_squared = t * t;
let one_minus_t = 1. - t;
let squared_one_minus_t = one_minus_t * one_minus_t;
match self.handles {
BezierHandles::Linear => self.start.lerp(self.end, t),
BezierHandles::Quadratic { handle } => squared_one_minus_t * self.start + 2. * one_minus_t * t * handle + t_squared * self.end,
BezierHandles::Cubic { handle_start, handle_end } => {
let t_cubed = t_squared * t;
let cubed_one_minus_t = squared_one_minus_t * one_minus_t;
cubed_one_minus_t * self.start + 3. * squared_one_minus_t * t * handle_start + 3. * one_minus_t * t_squared * handle_end + t_cubed * self.end
}
}
}
/// Calculate the coordinates of the point `t` along the curve.
/// Expects `t` to be within the inclusive range `[0, 1]`.
/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#bezier/evaluate/solo" title="Evaluate Demo"></iframe>
pub fn evaluate(&self, t: TValue) -> DVec2 {
let t = self.t_value_to_parametric(t);
self.unrestricted_parametric_evaluate(t)
}
/// Return a selection of equidistant points on the bezier curve.
/// If no value is provided for `steps`, then the function will default `steps` to be 10.
/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#bezier/lookup-table/solo" title="Lookup-Table Demo"></iframe>
pub fn compute_lookup_table(&self, steps: Option<usize>, tvalue_type: Option<TValueType>) -> impl Iterator<Item = DVec2> + '_ {
let steps = steps.unwrap_or(DEFAULT_LUT_STEP_SIZE);
let tvalue_type = tvalue_type.unwrap_or(TValueType::Parametric);
(0..=steps).map(move |t| {
let tvalue = match tvalue_type {
TValueType::Parametric => TValue::Parametric(t as f64 / steps as f64),
TValueType::Euclidean => TValue::Euclidean(t as f64 / steps as f64),
};
self.evaluate(tvalue)
})
}
/// Return an approximation of the length of the bezier curve.
/// - `tolerance` - Tolerance used to approximate the curve.
/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#bezier/length/solo" title="Length Demo"></iframe>
pub fn length(&self, tolerance: Option<f64>) -> f64 {
match self.handles {
BezierHandles::Linear => (self.start - self.end).length(),
BezierHandles::Quadratic { handle } => {
// Use Casteljau subdivision, noting that the length is more than the straight line distance from start to end but less than the straight line distance through the handles
fn recurse(a0: DVec2, a1: DVec2, a2: DVec2, tolerance: f64, level: u8) -> f64 {
let lower = a0.distance(a2);
let upper = a0.distance(a1) + a1.distance(a2);
if upper - lower <= 2. * tolerance || level >= 8 {
return (lower + upper) / 2.;
}
let b1 = 0.5 * (a0 + a1);
let c1 = 0.5 * (a1 + a2);
let b2 = 0.5 * (b1 + c1);
recurse(a0, b1, b2, 0.5 * tolerance, level + 1) + recurse(b2, c1, a2, 0.5 * tolerance, level + 1)
}
recurse(self.start, handle, self.end, tolerance.unwrap_or_default(), 0)
}
BezierHandles::Cubic { handle_start, handle_end } => {
// Use Casteljau subdivision, noting that the length is more than the straight line distance from start to end but less than the straight line distance through the handles
fn recurse(a0: DVec2, a1: DVec2, a2: DVec2, a3: DVec2, tolerance: f64, level: u8) -> f64 {
let lower = a0.distance(a3);
let upper = a0.distance(a1) + a1.distance(a2) + a2.distance(a3);
if upper - lower <= 2. * tolerance || level >= 8 {
return (lower + upper) / 2.;
}
let b1 = 0.5 * (a0 + a1);
let t0 = 0.5 * (a1 + a2);
let c1 = 0.5 * (a2 + a3);
let b2 = 0.5 * (b1 + t0);
let c2 = 0.5 * (t0 + c1);
let b3 = 0.5 * (b2 + c2);
recurse(a0, b1, b2, b3, 0.5 * tolerance, level + 1) + recurse(b3, c2, c1, a3, 0.5 * tolerance, level + 1)
}
recurse(self.start, handle_start, handle_end, self.end, tolerance.unwrap_or_default(), 0)
}
}
}
/// Return an approximation of the length centroid, together with the length, of the bezier curve.
///
/// The length centroid is the center of mass for the arc length of the Bezier segment.
/// An infinitely thin wire forming the Bezier segment's shape would balance at this point.
///
/// - `tolerance` - Tolerance used to approximate the curve.
pub fn length_centroid_and_length(&self, tolerance: Option<f64>) -> (DVec2, f64) {
match self.handles {
BezierHandles::Linear => ((self.start + self.end()) / 2., (self.start - self.end).length()),
BezierHandles::Quadratic { handle } => {
// Use Casteljau subdivision, noting that the length is more than the straight line distance from start to end but less than the straight line distance through the handles
fn recurse(a0: DVec2, a1: DVec2, a2: DVec2, tolerance: f64, level: u8) -> (f64, DVec2) {
let lower = a0.distance(a2);
let upper = a0.distance(a1) + a1.distance(a2);
if upper - lower <= 2. * tolerance || level >= 8 {
let length = (lower + upper) / 2.;
return (length, length * (a0 + a1 + a2) / 3.);
}
let b1 = 0.5 * (a0 + a1);
let c1 = 0.5 * (a1 + a2);
let b2 = 0.5 * (b1 + c1);
let (length1, centroid_part1) = recurse(a0, b1, b2, 0.5 * tolerance, level + 1);
let (length2, centroid_part2) = recurse(b2, c1, a2, 0.5 * tolerance, level + 1);
(length1 + length2, centroid_part1 + centroid_part2)
}
let (length, centroid_parts) = recurse(self.start, handle, self.end, tolerance.unwrap_or_default(), 0);
(centroid_parts / length, length)
}
BezierHandles::Cubic { handle_start, handle_end } => {
// Use Casteljau subdivision, noting that the length is more than the straight line distance from start to end but less than the straight line distance through the handles
fn recurse(a0: DVec2, a1: DVec2, a2: DVec2, a3: DVec2, tolerance: f64, level: u8) -> (f64, DVec2) {
let lower = a0.distance(a3);
let upper = a0.distance(a1) + a1.distance(a2) + a2.distance(a3);
if upper - lower <= 2. * tolerance || level >= 8 {
let length = (lower + upper) / 2.;
return (length, length * (a0 + a1 + a2 + a3) / 4.);
}
let b1 = 0.5 * (a0 + a1);
let t0 = 0.5 * (a1 + a2);
let c1 = 0.5 * (a2 + a3);
let b2 = 0.5 * (b1 + t0);
let c2 = 0.5 * (t0 + c1);
let b3 = 0.5 * (b2 + c2);
let (length1, centroid_part1) = recurse(a0, b1, b2, b3, 0.5 * tolerance, level + 1);
let (length2, centroid_part2) = recurse(b3, c2, c1, a3, 0.5 * tolerance, level + 1);
(length1 + length2, centroid_part1 + centroid_part2)
}
let (length, centroid_parts) = recurse(self.start, handle_start, handle_end, self.end, tolerance.unwrap_or_default(), 0);
(centroid_parts / length, length)
}
}
}
/// Return an approximation of the length centroid of the Bezier curve.
///
/// The length centroid is the center of mass for the arc length of the Bezier segment.
/// An infinitely thin wire with the Bezier segment's shape would balance at this point.
///
/// - `tolerance` - Tolerance used to approximate the curve.
/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#bezier/length-centroid/solo" title="Length Centroid Demo"></iframe>
pub fn length_centroid(&self, tolerance: Option<f64>) -> DVec2 {
self.length_centroid_and_length(tolerance).0
}
/// Returns the parametric `t`-value that corresponds to the closest point on the curve to the provided point.
/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#bezier/project/solo" title="Project Demo"></iframe>
pub fn project(&self, point: DVec2) -> f64 {
let sbasis = crate::symmetrical_basis::to_symmetrical_basis_pair(*self);
let derivative = sbasis.derivative();
let dd = (sbasis - point).dot(&derivative);
let roots = dd.roots();
let mut closest = 0.;
let mut min_dist_squared = self.evaluate(TValue::Parametric(0.)).distance_squared(point);
for time in roots {
let distance = self.evaluate(TValue::Parametric(time)).distance_squared(point);
if distance < min_dist_squared {
closest = time;
min_dist_squared = distance;
}
}
if self.evaluate(TValue::Parametric(1.)).distance_squared(point) < min_dist_squared {
closest = 1.;
}
closest
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_evaluate() {
let p1 = DVec2::new(3., 5.);
let p2 = DVec2::new(14., 3.);
let p3 = DVec2::new(19., 14.);
let p4 = DVec2::new(30., 21.);
let bezier1 = Bezier::from_quadratic_dvec2(p1, p2, p3);
assert_eq!(bezier1.evaluate(TValue::Parametric(0.5)), DVec2::new(12.5, 6.25));
let bezier2 = Bezier::from_cubic_dvec2(p1, p2, p3, p4);
assert_eq!(bezier2.evaluate(TValue::Parametric(0.5)), DVec2::new(16.5, 9.625));
}
#[test]
fn test_compute_lookup_table() {
let bezier1 = Bezier::from_quadratic_coordinates(10., 10., 30., 30., 50., 10.);
let lookup_table1 = bezier1.compute_lookup_table(Some(2), Some(TValueType::Parametric)).collect::<Vec<_>>();
assert_eq!(lookup_table1, vec![bezier1.start(), bezier1.evaluate(TValue::Parametric(0.5)), bezier1.end()]);
let bezier2 = Bezier::from_cubic_coordinates(10., 10., 30., 30., 70., 70., 90., 10.);
let lookup_table2 = bezier2.compute_lookup_table(Some(4), Some(TValueType::Parametric)).collect::<Vec<_>>();
assert_eq!(
lookup_table2,
vec![
bezier2.start(),
bezier2.evaluate(TValue::Parametric(0.25)),
bezier2.evaluate(TValue::Parametric(0.50)),
bezier2.evaluate(TValue::Parametric(0.75)),
bezier2.end()
]
);
}
#[test]
fn test_length() {
let p1 = DVec2::new(30., 50.);
let p2 = DVec2::new(140., 30.);
let p3 = DVec2::new(160., 170.);
let p4 = DVec2::new(77., 129.);
let bezier_linear = Bezier::from_linear_dvec2(p1, p2);
assert!(utils::f64_compare(bezier_linear.length(None), p1.distance(p2), MAX_ABSOLUTE_DIFFERENCE));
let bezier_quadratic = Bezier::from_quadratic_dvec2(p1, p2, p3);
assert!(utils::f64_compare(bezier_quadratic.length(None), 204., 1e-2));
let bezier_cubic = Bezier::from_cubic_dvec2(p1, p2, p3, p4);
assert!(utils::f64_compare(bezier_cubic.length(None), 199., 1e-2));
}
#[test]
fn test_length_centroid() {
let p1 = DVec2::new(30., 50.);
let p2 = DVec2::new(140., 30.);
let p3 = DVec2::new(160., 170.);
let p4 = DVec2::new(77., 129.);
let bezier_linear = Bezier::from_linear_dvec2(p1, p2);
assert!(bezier_linear.length_centroid_and_length(None).0.abs_diff_eq((p1 + p2) / 2., MAX_ABSOLUTE_DIFFERENCE));
let bezier_quadratic = Bezier::from_quadratic_dvec2(p1, p2, p3);
let expected = DVec2::new(112.81017736920136, 87.98713052477228);
assert!(bezier_quadratic.length_centroid_and_length(None).0.abs_diff_eq(expected, MAX_ABSOLUTE_DIFFERENCE));
let bezier_cubic = Bezier::from_cubic_dvec2(p1, p2, p3, p4);
let expected = DVec2::new(95.23597072432115, 88.0645175770206);
assert!(bezier_cubic.length_centroid_and_length(None).0.abs_diff_eq(expected, MAX_ABSOLUTE_DIFFERENCE));
}
#[test]
fn test_project() {
let bezier1 = Bezier::from_cubic_coordinates(4., 4., 23., 45., 10., 30., 56., 90.);
assert_eq!(bezier1.project(DVec2::ZERO), 0.);
assert_eq!(bezier1.project(DVec2::new(100., 100.)), 1.);
let bezier2 = Bezier::from_quadratic_coordinates(0., 0., 0., 100., 100., 100.);
assert_eq!(bezier2.project(DVec2::new(100., 0.)), 0.);
let bezier3 = Bezier::from_cubic_coordinates(-50., -50., -50., -50., 50., -50., 50., -50.);
assert_eq!(DVec2::new(0., -50.), bezier3.evaluate(TValue::Parametric(bezier3.project(DVec2::new(0., -50.)))));
}
}
|