File size: 7,031 Bytes
2409829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
use std::fmt::{self, Display, Formatter};
use std::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};

/// A struct that represents a polynomial with a maximum degree of `N-1`.
///
/// It provides basic mathematical operations for polynomials like addition, multiplication, differentiation, integration, etc.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct Polynomial<const N: usize> {
	coefficients: [f64; N],
}

impl<const N: usize> Polynomial<N> {
	/// Create a new polynomial from the coefficients given in the array.
	///
	/// The coefficient for nth degree is at the nth index in array. Therefore the order of coefficients are reversed than the usual order for writing polynomials mathematically.
	pub fn new(coefficients: [f64; N]) -> Polynomial<N> {
		Polynomial { coefficients }
	}

	/// Create a polynomial where all its coefficients are zero.
	pub fn zero() -> Polynomial<N> {
		Polynomial { coefficients: [0.; N] }
	}

	/// Return an immutable reference to the coefficients.
	///
	/// The coefficient for nth degree is at the nth index in array. Therefore the order of coefficients are reversed than the usual order for writing polynomials mathematically.
	pub fn coefficients(&self) -> &[f64; N] {
		&self.coefficients
	}

	/// Return a mutable reference to the coefficients.
	///
	/// The coefficient for nth degree is at the nth index in array. Therefore the order of coefficients are reversed than the usual order for writing polynomials mathematically.
	pub fn coefficients_mut(&mut self) -> &mut [f64; N] {
		&mut self.coefficients
	}

	/// Evaluate the polynomial at `value`.
	pub fn eval(&self, value: f64) -> f64 {
		self.coefficients.iter().rev().copied().reduce(|acc, x| acc * value + x).unwrap()
	}

	/// Return the same polynomial but with a different maximum degree of `M-1`.\
	///
	/// Returns `None` if the polynomial cannot fit in the specified size.
	pub fn as_size<const M: usize>(&self) -> Option<Polynomial<M>> {
		let mut coefficients = [0.; M];

		if M >= N {
			coefficients[..N].copy_from_slice(&self.coefficients);
		} else if self.coefficients.iter().rev().take(N - M).all(|&x| x == 0.) {
			coefficients.copy_from_slice(&self.coefficients[..M])
		} else {
			return None;
		}

		Some(Polynomial { coefficients })
	}

	/// Computes the derivative in place.
	pub fn derivative_mut(&mut self) {
		self.coefficients.iter_mut().enumerate().for_each(|(index, x)| *x *= index as f64);
		self.coefficients.rotate_left(1);
	}

	/// Computes the antiderivative at `C = 0` in place.
	///
	/// Returns `None` if the polynomial is not big enough to accommodate the extra degree.
	pub fn antiderivative_mut(&mut self) -> Option<()> {
		if self.coefficients[N - 1] != 0. {
			return None;
		}
		self.coefficients.rotate_right(1);
		self.coefficients.iter_mut().enumerate().skip(1).for_each(|(index, x)| *x /= index as f64);
		Some(())
	}

	/// Computes the polynomial's derivative.
	pub fn derivative(&self) -> Polynomial<N> {
		let mut ans = *self;
		ans.derivative_mut();
		ans
	}

	/// Computes the antiderivative at `C = 0`.
	///
	/// Returns `None` if the polynomial is not big enough to accommodate the extra degree.
	pub fn antiderivative(&self) -> Option<Polynomial<N>> {
		let mut ans = *self;
		ans.antiderivative_mut()?;
		Some(ans)
	}
}

impl<const N: usize> Default for Polynomial<N> {
	fn default() -> Self {
		Self::zero()
	}
}

impl<const N: usize> Display for Polynomial<N> {
	fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
		let mut first = true;
		for (index, coefficient) in self.coefficients.iter().enumerate().rev().filter(|&(_, &coefficient)| coefficient != 0.) {
			if first {
				first = false;
			} else {
				f.write_str(" + ")?
			}

			coefficient.fmt(f)?;
			if index == 0 {
				continue;
			}
			f.write_str("x")?;
			if index == 1 {
				continue;
			}
			f.write_str("^")?;
			index.fmt(f)?;
		}

		Ok(())
	}
}

impl<const N: usize> AddAssign<&Polynomial<N>> for Polynomial<N> {
	fn add_assign(&mut self, rhs: &Polynomial<N>) {
		self.coefficients.iter_mut().zip(rhs.coefficients.iter()).for_each(|(a, b)| *a += b);
	}
}

impl<const N: usize> Add for &Polynomial<N> {
	type Output = Polynomial<N>;

	fn add(self, other: &Polynomial<N>) -> Polynomial<N> {
		let mut output = *self;
		output += other;
		output
	}
}

impl<const N: usize> Neg for &Polynomial<N> {
	type Output = Polynomial<N>;

	fn neg(self) -> Polynomial<N> {
		let mut output = *self;
		output.coefficients.iter_mut().for_each(|x| *x = -*x);
		output
	}
}

impl<const N: usize> Neg for Polynomial<N> {
	type Output = Polynomial<N>;

	fn neg(mut self) -> Polynomial<N> {
		self.coefficients.iter_mut().for_each(|x| *x = -*x);
		self
	}
}

impl<const N: usize> SubAssign<&Polynomial<N>> for Polynomial<N> {
	fn sub_assign(&mut self, rhs: &Polynomial<N>) {
		self.coefficients.iter_mut().zip(rhs.coefficients.iter()).for_each(|(a, b)| *a -= b);
	}
}

impl<const N: usize> Sub for &Polynomial<N> {
	type Output = Polynomial<N>;

	fn sub(self, other: &Polynomial<N>) -> Polynomial<N> {
		let mut output = *self;
		output -= other;
		output
	}
}

impl<const N: usize> MulAssign<&Polynomial<N>> for Polynomial<N> {
	fn mul_assign(&mut self, rhs: &Polynomial<N>) {
		for i in (0..N).rev() {
			self.coefficients[i] = self.coefficients[i] * rhs.coefficients[0];
			for j in 0..i {
				self.coefficients[i] += self.coefficients[j] * rhs.coefficients[i - j];
			}
		}
	}
}

impl<const N: usize> Mul for &Polynomial<N> {
	type Output = Polynomial<N>;

	fn mul(self, other: &Polynomial<N>) -> Polynomial<N> {
		let mut output = *self;
		output *= other;
		output
	}
}

#[cfg(test)]
mod test {
	use super::*;

	#[test]
	fn evaluation() {
		let p = Polynomial::new([1., 2., 3.]);

		assert_eq!(p.eval(1.), 6.);
		assert_eq!(p.eval(2.), 17.);
	}

	#[test]
	fn size_change() {
		let p1 = Polynomial::new([1., 2., 3.]);
		let p2 = Polynomial::new([1., 2., 3., 0.]);

		assert_eq!(p1.as_size(), Some(p2));
		assert_eq!(p2.as_size(), Some(p1));

		assert_eq!(p2.as_size::<2>(), None);
	}

	#[test]
	fn addition_and_subtaction() {
		let p1 = Polynomial::new([1., 2., 3.]);
		let p2 = Polynomial::new([4., 5., 6.]);

		let addition = Polynomial::new([5., 7., 9.]);
		let subtraction = Polynomial::new([-3., -3., -3.]);

		assert_eq!(&p1 + &p2, addition);
		assert_eq!(&p1 - &p2, subtraction);
	}

	#[test]
	fn multiplication() {
		let p1 = Polynomial::new([1., 2., 3.]).as_size().unwrap();
		let p2 = Polynomial::new([4., 5., 6.]).as_size().unwrap();

		let multiplication = Polynomial::new([4., 13., 28., 27., 18.]);

		assert_eq!(&p1 * &p2, multiplication);
	}

	#[test]
	fn derivative_and_antiderivative() {
		let mut p = Polynomial::new([1., 2., 3.]);
		let p_deriv = Polynomial::new([2., 6., 0.]);

		assert_eq!(p.derivative(), p_deriv);

		p.coefficients_mut()[0] = 0.;
		assert_eq!(p_deriv.antiderivative().unwrap(), p);

		assert_eq!(p.antiderivative(), None);
	}

	#[test]
	fn display() {
		let p = Polynomial::new([1., 2., 0., 3.]);

		assert_eq!(format!("{:.2}", p), "3.00x^3 + 2.00x + 1.00");
	}
}