File size: 23,097 Bytes
2409829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
use super::*;
use crate::consts::*;
use crate::utils::format_point;
use glam::DVec2;
use std::fmt::Write;
/// Functionality relating to core `Subpath` operations, such as constructors and `iter`.
impl<PointId: crate::Identifier> Subpath<PointId> {
/// Create a new `Subpath` using a list of [ManipulatorGroup]s.
/// A `Subpath` with less than 2 [ManipulatorGroup]s may not be closed.
#[track_caller]
pub fn new(manipulator_groups: Vec<ManipulatorGroup<PointId>>, closed: bool) -> Self {
assert!(!closed || !manipulator_groups.is_empty(), "A closed Subpath must contain more than 0 ManipulatorGroups.");
Self { manipulator_groups, closed }
}
/// Create a `Subpath` consisting of 2 manipulator groups from a `Bezier`.
pub fn from_bezier(bezier: &Bezier) -> Self {
Subpath::new(
vec![
ManipulatorGroup {
anchor: bezier.start(),
in_handle: None,
out_handle: bezier.handle_start(),
id: PointId::new(),
},
ManipulatorGroup {
anchor: bezier.end(),
in_handle: bezier.handle_end(),
out_handle: None,
id: PointId::new(),
},
],
false,
)
}
/// Creates a subpath from a slice of [Bezier]. When two consecutive Beziers do not share an end and start point, this function
/// resolves the discrepancy by simply taking the start-point of the second Bezier as the anchor of the Manipulator Group.
pub fn from_beziers(beziers: &[Bezier], closed: bool) -> Self {
assert!(!closed || beziers.len() > 1, "A closed Subpath must contain at least 1 Bezier.");
if beziers.is_empty() {
return Subpath::new(vec![], closed);
}
let first = beziers.first().unwrap();
let mut manipulator_groups = vec![ManipulatorGroup {
anchor: first.start(),
in_handle: None,
out_handle: first.handle_start(),
id: PointId::new(),
}];
let mut inner_groups: Vec<ManipulatorGroup<PointId>> = beziers
.windows(2)
.map(|bezier_pair| ManipulatorGroup {
anchor: bezier_pair[1].start(),
in_handle: bezier_pair[0].handle_end(),
out_handle: bezier_pair[1].handle_start(),
id: PointId::new(),
})
.collect::<Vec<ManipulatorGroup<PointId>>>();
manipulator_groups.append(&mut inner_groups);
let last = beziers.last().unwrap();
if !closed {
manipulator_groups.push(ManipulatorGroup {
anchor: last.end(),
in_handle: last.handle_end(),
out_handle: None,
id: PointId::new(),
});
return Subpath::new(manipulator_groups, false);
}
manipulator_groups[0].in_handle = last.handle_end();
Subpath::new(manipulator_groups, true)
}
/// Returns true if the `Subpath` contains no [ManipulatorGroup].
pub fn is_empty(&self) -> bool {
self.manipulator_groups.is_empty()
}
/// Returns the number of [ManipulatorGroup]s contained within the `Subpath`.
pub fn len(&self) -> usize {
self.manipulator_groups.len()
}
/// Returns the number of segments contained within the `Subpath`.
pub fn len_segments(&self) -> usize {
let mut number_of_curves = self.len();
if !self.closed && number_of_curves > 0 {
number_of_curves -= 1
}
number_of_curves
}
/// Returns a copy of the bezier segment at the given segment index, if this segment exists.
pub fn get_segment(&self, segment_index: usize) -> Option<Bezier> {
if segment_index >= self.len_segments() {
return None;
}
Some(self[segment_index].to_bezier(&self[(segment_index + 1) % self.len()]))
}
/// Returns an iterator of the [Bezier]s along the `Subpath`.
pub fn iter(&self) -> SubpathIter<'_, PointId> {
SubpathIter {
subpath: self,
index: 0,
is_always_closed: false,
}
}
/// Returns an iterator of the [Bezier]s along the `Subpath` always considering it as a closed subpath.
pub fn iter_closed(&self) -> SubpathIter<'_, PointId> {
SubpathIter {
subpath: self,
index: 0,
is_always_closed: true,
}
}
/// Returns a slice of the [ManipulatorGroup]s in the `Subpath`.
pub fn manipulator_groups(&self) -> &[ManipulatorGroup<PointId>] {
&self.manipulator_groups
}
/// Returns a mutable reference to the [ManipulatorGroup]s in the `Subpath`.
pub fn manipulator_groups_mut(&mut self) -> &mut Vec<ManipulatorGroup<PointId>> {
&mut self.manipulator_groups
}
/// Returns a vector of all the anchors (DVec2) for this `Subpath`.
pub fn anchors(&self) -> Vec<DVec2> {
self.manipulator_groups().iter().map(|group| group.anchor).collect()
}
/// Returns if the Subpath is equivalent to a single point.
pub fn is_point(&self) -> bool {
if self.is_empty() {
return false;
}
let point = self.manipulator_groups[0].anchor;
self.manipulator_groups
.iter()
.all(|manipulator_group| manipulator_group.anchor.abs_diff_eq(point, MAX_ABSOLUTE_DIFFERENCE))
}
/// Appends to the `svg` mutable string with an SVG shape representation of the curve.
pub fn curve_to_svg(&self, svg: &mut String, attributes: String) {
let curve_start_argument = format!("{SVG_ARG_MOVE}{} {}", self[0].anchor.x, self[0].anchor.y);
let mut curve_arguments: Vec<String> = self.iter().map(|bezier| bezier.svg_curve_argument()).collect();
if self.closed {
curve_arguments.push(String::from(SVG_ARG_CLOSED));
}
let _ = write!(svg, r#"<path d="{} {}" {attributes}/>"#, curve_start_argument, curve_arguments.join(" "));
}
/// Write the curve argument to the string (the d="..." part)
pub fn subpath_to_svg(&self, svg: &mut String, transform: glam::DAffine2) -> std::fmt::Result {
if self.is_empty() {
return Ok(());
}
let start = transform.transform_point2(self[0].anchor);
format_point(svg, SVG_ARG_MOVE, start.x, start.y)?;
for bezier in self.iter() {
bezier.apply_transformation(|pos| transform.transform_point2(pos)).write_curve_argument(svg)?;
svg.push(' ');
}
if self.closed {
svg.push_str(SVG_ARG_CLOSED);
}
Ok(())
}
/// Appends to the `svg` mutable string with an SVG shape representation of the handle lines.
pub fn handle_lines_to_svg(&self, svg: &mut String, attributes: String) {
let handle_lines: Vec<String> = self.iter().filter_map(|bezier| bezier.svg_handle_line_argument()).collect();
let _ = write!(svg, r#"<path d="{}" {attributes}/>"#, handle_lines.join(" "));
}
/// Appends to the `svg` mutable string with an SVG shape representation of the anchors.
pub fn anchors_to_svg(&self, svg: &mut String, attributes: String) {
let anchors = self
.manipulator_groups
.iter()
.map(|point| format!(r#"<circle cx="{}" cy="{}" {attributes}/>"#, point.anchor.x, point.anchor.y))
.collect::<Vec<String>>();
let _ = write!(svg, "{}", anchors.concat());
}
/// Appends to the `svg` mutable string with an SVG shape representation of the handles.
pub fn handles_to_svg(&self, svg: &mut String, attributes: String) {
let handles = self
.manipulator_groups
.iter()
.flat_map(|group| [group.in_handle, group.out_handle])
.flatten()
.map(|handle| format!(r#"<circle cx="{}" cy="{}" {attributes}/>"#, handle.x, handle.y))
.collect::<Vec<String>>();
let _ = write!(svg, "{}", handles.concat());
}
/// Returns an SVG representation of the `Subpath`.
/// Appends to the `svg` mutable string with an SVG shape representation that includes the curve, the handle lines, the anchors, and the handles.
pub fn to_svg(&self, svg: &mut String, curve_attributes: String, anchor_attributes: String, handle_attributes: String, handle_line_attributes: String) {
if !curve_attributes.is_empty() {
self.curve_to_svg(svg, curve_attributes);
}
if !handle_line_attributes.is_empty() {
self.handle_lines_to_svg(svg, handle_line_attributes);
}
if !anchor_attributes.is_empty() {
self.anchors_to_svg(svg, anchor_attributes);
}
if !handle_attributes.is_empty() {
self.handles_to_svg(svg, handle_attributes);
}
}
/// Construct a [Subpath] from an iter of anchor positions.
pub fn from_anchors(anchor_positions: impl IntoIterator<Item = DVec2>, closed: bool) -> Self {
Self::new(anchor_positions.into_iter().map(|anchor| ManipulatorGroup::new_anchor(anchor)).collect(), closed)
}
pub fn from_anchors_linear(anchor_positions: impl IntoIterator<Item = DVec2>, closed: bool) -> Self {
Self::new(anchor_positions.into_iter().map(|anchor| ManipulatorGroup::new_anchor_linear(anchor)).collect(), closed)
}
/// Constructs a rectangle with `corner1` and `corner2` as the two corners.
pub fn new_rect(corner1: DVec2, corner2: DVec2) -> Self {
Self::from_anchors_linear([corner1, DVec2::new(corner2.x, corner1.y), corner2, DVec2::new(corner1.x, corner2.y)], true)
}
/// Constructs a rounded rectangle with `corner1` and `corner2` as the two corners and `corner_radii` as the radii of the corners: `[top_left, top_right, bottom_right, bottom_left]`.
pub fn new_rounded_rect(corner1: DVec2, corner2: DVec2, corner_radii: [f64; 4]) -> Self {
if corner_radii.iter().all(|radii| radii.abs() < f64::EPSILON * 100.) {
return Self::new_rect(corner1, corner2);
}
use std::f64::consts::{FRAC_1_SQRT_2, PI};
let new_arc = |center: DVec2, corner: DVec2, radius: f64| -> Vec<ManipulatorGroup<PointId>> {
let point1 = center + DVec2::from_angle(-PI * 0.25).rotate(corner - center) * FRAC_1_SQRT_2;
let point2 = center + DVec2::from_angle(PI * 0.25).rotate(corner - center) * FRAC_1_SQRT_2;
if radius == 0. {
return vec![ManipulatorGroup::new_anchor(point1), ManipulatorGroup::new_anchor(point2)];
}
// Based on https://pomax.github.io/bezierinfo/#circles_cubic
const HANDLE_OFFSET_FACTOR: f64 = 0.551784777779014;
let handle_offset = radius * HANDLE_OFFSET_FACTOR;
vec![
ManipulatorGroup::new(point1, None, Some(point1 + handle_offset * (corner - point1).normalize())),
ManipulatorGroup::new(point2, Some(point2 + handle_offset * (corner - point2).normalize()), None),
]
};
Self::new(
[
new_arc(DVec2::new(corner1.x + corner_radii[0], corner1.y + corner_radii[0]), DVec2::new(corner1.x, corner1.y), corner_radii[0]),
new_arc(DVec2::new(corner2.x - corner_radii[1], corner1.y + corner_radii[1]), DVec2::new(corner2.x, corner1.y), corner_radii[1]),
new_arc(DVec2::new(corner2.x - corner_radii[2], corner2.y - corner_radii[2]), DVec2::new(corner2.x, corner2.y), corner_radii[2]),
new_arc(DVec2::new(corner1.x + corner_radii[3], corner2.y - corner_radii[3]), DVec2::new(corner1.x, corner2.y), corner_radii[3]),
]
.concat(),
true,
)
}
/// Constructs an ellipse with `corner1` and `corner2` as the two corners of the bounding box.
pub fn new_ellipse(corner1: DVec2, corner2: DVec2) -> Self {
let size = (corner1 - corner2).abs();
let center = (corner1 + corner2) / 2.;
let top = DVec2::new(center.x, corner1.y);
let bottom = DVec2::new(center.x, corner2.y);
let left = DVec2::new(corner1.x, center.y);
let right = DVec2::new(corner2.x, center.y);
// Based on https://pomax.github.io/bezierinfo/#circles_cubic
const HANDLE_OFFSET_FACTOR: f64 = 0.551784777779014;
let handle_offset = size * HANDLE_OFFSET_FACTOR * 0.5;
let manipulator_groups = vec![
ManipulatorGroup::new(top, Some(top - handle_offset * DVec2::X), Some(top + handle_offset * DVec2::X)),
ManipulatorGroup::new(right, Some(right - handle_offset * DVec2::Y), Some(right + handle_offset * DVec2::Y)),
ManipulatorGroup::new(bottom, Some(bottom + handle_offset * DVec2::X), Some(bottom - handle_offset * DVec2::X)),
ManipulatorGroup::new(left, Some(left + handle_offset * DVec2::Y), Some(left - handle_offset * DVec2::Y)),
];
Self::new(manipulator_groups, true)
}
/// Constructs an arc by a `radius`, `angle_start` and `angle_size`. Angles must be in radians. Slice option makes it look like pie or pacman.
pub fn new_arc(radius: f64, start_angle: f64, sweep_angle: f64, arc_type: ArcType) -> Self {
// Prevents glitches from numerical imprecision that have been observed during animation playback after about a minute
let start_angle = start_angle % (std::f64::consts::TAU * 2.);
let sweep_angle = sweep_angle % (std::f64::consts::TAU * 2.);
let original_start_angle = start_angle;
let sweep_angle_sign = sweep_angle.signum();
let mut start_angle = 0.;
let mut sweep_angle = sweep_angle.abs();
if (sweep_angle / std::f64::consts::TAU).floor() as u32 % 2 == 0 {
sweep_angle %= std::f64::consts::TAU;
} else {
start_angle = sweep_angle % std::f64::consts::TAU;
sweep_angle = std::f64::consts::TAU - start_angle;
}
sweep_angle *= sweep_angle_sign;
start_angle *= sweep_angle_sign;
start_angle += original_start_angle;
let closed = arc_type == ArcType::Closed;
let slice = arc_type == ArcType::PieSlice;
let center = DVec2::new(0., 0.);
let segments = (sweep_angle.abs() / (std::f64::consts::PI / 4.)).ceil().max(1.) as usize;
let step = sweep_angle / segments as f64;
let factor = 4. / 3. * (step / 2.).sin() / (1. + (step / 2.).cos());
let mut manipulator_groups = Vec::with_capacity(segments);
let mut prev_in_handle = None;
let mut prev_end = DVec2::new(0., 0.);
for i in 0..segments {
let start_angle = start_angle + step * i as f64;
let end_angle = start_angle + step;
let start_vec = DVec2::from_angle(start_angle);
let end_vec = DVec2::from_angle(end_angle);
let start = center + radius * start_vec;
let end = center + radius * end_vec;
let handle_start = start + start_vec.perp() * radius * factor;
let handle_end = end - end_vec.perp() * radius * factor;
manipulator_groups.push(ManipulatorGroup::new(start, prev_in_handle, Some(handle_start)));
prev_in_handle = Some(handle_end);
prev_end = end;
}
manipulator_groups.push(ManipulatorGroup::new(prev_end, prev_in_handle, None));
if slice {
manipulator_groups.push(ManipulatorGroup::new(center, None, None));
}
Self::new(manipulator_groups, closed || slice)
}
/// Constructs a regular polygon (ngon). Based on `sides` and `radius`, which is the distance from the center to any vertex.
pub fn new_regular_polygon(center: DVec2, sides: u64, radius: f64) -> Self {
let sides = sides.max(3);
let angle_increment = std::f64::consts::TAU / (sides as f64);
let anchor_positions = (0..sides).map(|i| {
let angle = (i as f64) * angle_increment - std::f64::consts::FRAC_PI_2;
let center = center + DVec2::ONE * radius;
DVec2::new(center.x + radius * f64::cos(angle), center.y + radius * f64::sin(angle)) * 0.5
});
Self::from_anchors(anchor_positions, true)
}
/// Constructs a star polygon (n-star). See [new_regular_polygon], but with interspersed vertices at an `inner_radius`.
pub fn new_star_polygon(center: DVec2, sides: u64, radius: f64, inner_radius: f64) -> Self {
let sides = sides.max(2);
let angle_increment = 0.5 * std::f64::consts::TAU / (sides as f64);
let anchor_positions = (0..sides * 2).map(|i| {
let angle = (i as f64) * angle_increment - std::f64::consts::FRAC_PI_2;
let center = center + DVec2::ONE * radius;
let r = if i % 2 == 0 { radius } else { inner_radius };
DVec2::new(center.x + r * f64::cos(angle), center.y + r * f64::sin(angle)) * 0.5
});
Self::from_anchors(anchor_positions, true)
}
/// Constructs a line from `p1` to `p2`
pub fn new_line(p1: DVec2, p2: DVec2) -> Self {
Self::from_anchors([p1, p2], false)
}
/// Construct a cubic spline from a list of points.
/// Based on <https://mathworld.wolfram.com/CubicSpline.html>.
pub fn new_cubic_spline(points: Vec<DVec2>) -> Self {
if points.len() < 2 {
return Self::new(Vec::new(), false);
}
// Number of points = number of points to find handles for
let len_points = points.len();
let out_handles = solve_spline_first_handle_open(&points);
let mut subpath = Subpath::new(Vec::new(), false);
// given the second point in the n'th cubic bezier, the third point is given by 2 * points[n+1] - b[n+1].
// to find 'handle1_pos' for the n'th point we need the n-1 cubic bezier
subpath.manipulator_groups.push(ManipulatorGroup::new(points[0], None, Some(out_handles[0])));
for i in 1..len_points - 1 {
subpath
.manipulator_groups
.push(ManipulatorGroup::new(points[i], Some(2. * points[i] - out_handles[i]), Some(out_handles[i])));
}
subpath
.manipulator_groups
.push(ManipulatorGroup::new(points[len_points - 1], Some(2. * points[len_points - 1] - out_handles[len_points - 1]), None));
subpath
}
#[cfg(feature = "kurbo")]
pub fn to_vello_path(&self, transform: glam::DAffine2, path: &mut kurbo::BezPath) {
use crate::BezierHandles;
let to_point = |p: DVec2| {
let p = transform.transform_point2(p);
kurbo::Point::new(p.x, p.y)
};
path.move_to(to_point(self.iter().next().unwrap().start));
for segment in self.iter() {
match segment.handles {
BezierHandles::Linear => path.line_to(to_point(segment.end)),
BezierHandles::Quadratic { handle } => path.quad_to(to_point(handle), to_point(segment.end)),
BezierHandles::Cubic { handle_start, handle_end } => path.curve_to(to_point(handle_start), to_point(handle_end), to_point(segment.end)),
}
}
if self.closed {
path.close_path();
}
}
}
/// Solve for the first handle of an open spline. (The opposite handle can be found by mirroring the result about the anchor.)
pub fn solve_spline_first_handle_open(points: &[DVec2]) -> Vec<DVec2> {
let len_points = points.len();
if len_points == 0 {
return Vec::new();
}
if len_points == 1 {
return vec![points[0]];
}
// Matrix coefficients a, b and c (see https://mathworld.wolfram.com/CubicSpline.html).
// Because the `a` coefficients are all 1, they need not be stored.
// This algorithm does a variation of the above algorithm.
// Instead of using the traditional cubic (a + bt + ct^2 + dt^3), we use the bezier cubic.
let mut b = vec![DVec2::new(4., 4.); len_points];
b[0] = DVec2::new(2., 2.);
b[len_points - 1] = DVec2::new(2., 2.);
let mut c = vec![DVec2::new(1., 1.); len_points];
// 'd' is the the second point in a cubic bezier, which is what we solve for
let mut d = vec![DVec2::ZERO; len_points];
d[0] = DVec2::new(2. * points[1].x + points[0].x, 2. * points[1].y + points[0].y);
d[len_points - 1] = DVec2::new(3. * points[len_points - 1].x, 3. * points[len_points - 1].y);
for idx in 1..(len_points - 1) {
d[idx] = DVec2::new(4. * points[idx].x + 2. * points[idx + 1].x, 4. * points[idx].y + 2. * points[idx + 1].y);
}
// Solve with Thomas algorithm (see https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm)
// Now we do row operations to eliminate `a` coefficients.
c[0] /= -b[0];
d[0] /= -b[0];
#[allow(clippy::assign_op_pattern)]
for i in 1..len_points {
b[i] += c[i - 1];
// For some reason this `+=` version makes the borrow checker mad:
// d[i] += d[i-1]
d[i] = d[i] + d[i - 1];
c[i] /= -b[i];
d[i] /= -b[i];
}
// At this point b[i] == -a[i + 1] and a[i] == 0.
// Now we do row operations to eliminate 'c' coefficients and solve.
d[len_points - 1] *= -1.;
#[allow(clippy::assign_op_pattern)]
for i in (0..len_points - 1).rev() {
d[i] = d[i] - (c[i] * d[i + 1]);
d[i] *= -1.; // d[i] /= b[i]
}
d
}
/// Solve for the first handle of a closed spline. (The opposite handle can be found by mirroring the result about the anchor.)
/// If called with fewer than 3 points, this function will return an empty result.
pub fn solve_spline_first_handle_closed(points: &[DVec2]) -> Vec<DVec2> {
let len_points = points.len();
if len_points < 3 {
return Vec::new();
}
// Matrix coefficients `a`, `b` and `c` (see https://mathworld.wolfram.com/CubicSpline.html).
// We don't really need to allocate them but it keeps the maths understandable.
let a = vec![DVec2::ONE; len_points];
let b = vec![DVec2::splat(4.); len_points];
let c = vec![DVec2::ONE; len_points];
let mut cmod = vec![DVec2::ZERO; len_points];
let mut u = vec![DVec2::ZERO; len_points];
// `x` is initially the output of the matrix multiplication, but is converted to the second value.
let mut x = vec![DVec2::ZERO; len_points];
for (i, point) in x.iter_mut().enumerate() {
let previous_i = i.checked_sub(1).unwrap_or(len_points - 1);
let next_i = (i + 1) % len_points;
*point = 3. * (points[next_i] - points[previous_i]);
}
// Solve using https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm#Variants (the variant using periodic boundary conditions).
// This code below is based on the reference C language implementation provided in that section of the article.
let alpha = a[0];
let beta = c[len_points - 1];
// Arbitrary, but chosen such that division by zero is avoided.
let gamma = -b[0];
cmod[0] = alpha / (b[0] - gamma);
u[0] = gamma / (b[0] - gamma);
x[0] /= b[0] - gamma;
// Handle from from `1` to `len_points - 2` (inclusive).
for ix in 1..=(len_points - 2) {
let m = 1.0 / (b[ix] - a[ix] * cmod[ix - 1]);
cmod[ix] = c[ix] * m;
u[ix] = (0.0 - a[ix] * u[ix - 1]) * m;
x[ix] = (x[ix] - a[ix] * x[ix - 1]) * m;
}
// Handle `len_points - 1`.
let m = 1.0 / (b[len_points - 1] - alpha * beta / gamma - beta * cmod[len_points - 2]);
u[len_points - 1] = (alpha - a[len_points - 1] * u[len_points - 2]) * m;
x[len_points - 1] = (x[len_points - 1] - a[len_points - 1] * x[len_points - 2]) * m;
// Loop from `len_points - 2` to `0` (inclusive).
for ix in (0..=(len_points - 2)).rev() {
u[ix] = u[ix] - cmod[ix] * u[ix + 1];
x[ix] = x[ix] - cmod[ix] * x[ix + 1];
}
let fact = (x[0] + x[len_points - 1] * beta / gamma) / (1.0 + u[0] + u[len_points - 1] * beta / gamma);
for ix in 0..(len_points) {
x[ix] -= fact * u[ix];
}
let mut real = vec![DVec2::ZERO; len_points];
for i in 0..len_points {
let previous = i.checked_sub(1).unwrap_or(len_points - 1);
let next = (i + 1) % len_points;
real[i] = x[previous] * a[next] + x[i] * b[i] + x[next] * c[i];
}
// The matrix is now solved.
// Since we have computed the derivative, work back to find the start handle.
for i in 0..len_points {
x[i] = (x[i] / 3.) + points[i];
}
x
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn closed_spline() {
// These points are just chosen arbitrary
let points = [DVec2::new(0., 0.), DVec2::new(0., 0.), DVec2::new(6., 5.), DVec2::new(7., 9.), DVec2::new(2., 3.)];
let out_handles = solve_spline_first_handle_closed(&points);
// Construct the Subpath
let mut manipulator_groups = Vec::new();
for i in 0..out_handles.len() {
manipulator_groups.push(ManipulatorGroup::<EmptyId>::new(points[i], Some(2. * points[i] - out_handles[i]), Some(out_handles[i])));
}
let subpath = Subpath::new(manipulator_groups, true);
// For each pair of bézier curves, ensure that the second derivative is continuous
for (bézier_a, bézier_b) in subpath.iter().zip(subpath.iter().skip(1).chain(subpath.iter().take(1))) {
let derivative2_end_a = bézier_a.derivative().unwrap().derivative().unwrap().evaluate(crate::TValue::Parametric(1.));
let derivative2_start_b = bézier_b.derivative().unwrap().derivative().unwrap().evaluate(crate::TValue::Parametric(0.));
assert!(
derivative2_end_a.abs_diff_eq(derivative2_start_b, 1e-10),
"second derivative at the end of a {derivative2_end_a} is equal to the second derivative at the start of b {derivative2_start_b}"
);
}
}
}
|