File size: 20,589 Bytes
2409829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
use super::*;
use crate::consts::{DEFAULT_EUCLIDEAN_ERROR_BOUND, DEFAULT_LUT_STEP_SIZE, MAX_ABSOLUTE_DIFFERENCE};
use crate::utils::{SubpathTValue, TValue, TValueType};
use glam::DVec2;
/// Functionality relating to looking up properties of the `Subpath` or points along the `Subpath`.
impl<PointId: crate::Identifier> Subpath<PointId> {
/// Return a selection of equidistant points on the bezier curve.
/// If no value is provided for `steps`, then the function will default `steps` to be 10.
/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#subpath/lookup-table/solo" title="Lookup-Table Demo"></iframe>
pub fn compute_lookup_table(&self, steps: Option<usize>, tvalue_type: Option<TValueType>) -> Vec<DVec2> {
let steps = steps.unwrap_or(DEFAULT_LUT_STEP_SIZE);
let tvalue_type = tvalue_type.unwrap_or(TValueType::Parametric);
(0..=steps)
.map(|t| {
let tvalue = match tvalue_type {
TValueType::Parametric => SubpathTValue::GlobalParametric(t as f64 / steps as f64),
TValueType::Euclidean => SubpathTValue::GlobalEuclidean(t as f64 / steps as f64),
};
self.evaluate(tvalue)
})
.collect()
}
/// Return the sum of the approximation of the length of each `Bezier` curve along the `Subpath`.
/// - `tolerance` - Tolerance used to approximate the curve.
/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#subpath/length/solo" title="Length Demo"></iframe>
pub fn length(&self, tolerance: Option<f64>) -> f64 {
self.iter().map(|bezier| bezier.length(tolerance)).sum()
}
/// Return the approximation of the length centroid, together with the length, of the `Subpath`.
///
/// The length centroid is the center of mass for the arc length of the solid shape's perimeter.
/// An infinitely thin wire forming the subpath's closed shape would balance at this point.
///
/// It will return `None` if no manipulator is present.
/// - `tolerance` - Tolerance used to approximate the curve.
/// - `always_closed` - consider the subpath as closed always.
pub fn length_centroid_and_length(&self, tolerance: Option<f64>, always_closed: bool) -> Option<(DVec2, f64)> {
if always_closed { self.iter_closed() } else { self.iter() }
.map(|bezier| bezier.length_centroid_and_length(tolerance))
.map(|(centroid, length)| (centroid * length, length))
.reduce(|(centroid_part1, length1), (centroid_part2, length2)| (centroid_part1 + centroid_part2, length1 + length2))
.map(|(centroid_part, length)| (centroid_part / length, length))
}
/// Return the approximation of the length centroid of the `Subpath`.
///
/// The length centroid is the center of mass for the arc length of the solid shape's perimeter.
/// An infinitely thin wire forming the subpath's closed shape would balance at this point.
///
/// It will return `None` if no manipulator is present.
/// - `tolerance` - Tolerance used to approximate the curve.
/// - `always_closed` - consider the subpath as closed always.
/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#subpath/length-centroid/solo" title="Length Centroid Demo"></iframe>
pub fn length_centroid(&self, tolerance: Option<f64>, always_closed: bool) -> Option<DVec2> {
self.length_centroid_and_length(tolerance, always_closed).map(|(centroid, _)| centroid)
}
/// Return the area enclosed by the `Subpath` always considering it as a closed subpath. It will always give a positive value.
///
/// If the area is less than `error`, it will return zero.
/// Because the calculation of area for self-intersecting path requires finding the intersections, the following parameters are used:
/// - `error` - For intersections with non-linear beziers, `error` defines the threshold for bounding boxes to be considered an intersection point.
/// - `minimum_separation` - the minimum difference two adjacent `t`-values must have when comparing adjacent `t`-values in sorted order.
///
/// If the comparison condition is not satisfied, the function takes the larger `t`-value of the two
///
/// **NOTE**: if an intersection were to occur within an `error` distance away from an anchor point, the algorithm will filter that intersection out.
pub fn area(&self, error: Option<f64>, minimum_separation: Option<f64>) -> f64 {
let all_intersections = self.all_self_intersections(error, minimum_separation);
let mut current_sign: f64 = 1.;
let area: f64 = self
.iter_closed()
.enumerate()
.map(|(index, bezier)| {
let (f_x, f_y) = bezier.parametric_polynomial();
let (f_x, mut f_y) = (f_x.as_size::<7>().unwrap(), f_y.as_size::<7>().unwrap());
f_y.derivative_mut();
f_y *= &f_x;
f_y.antiderivative_mut();
let mut curve_sum = -current_sign * f_y.eval(0.);
for (_, t) in all_intersections.iter().filter(|(i, _)| *i == index) {
curve_sum += 2. * current_sign * f_y.eval(*t);
current_sign *= -1.;
}
curve_sum += current_sign * f_y.eval(1.);
curve_sum
})
.sum();
if area.abs() < error.unwrap_or(MAX_ABSOLUTE_DIFFERENCE) {
return 0.;
}
area.abs()
}
/// Return the area centroid, together with the area, of the `Subpath` always considering it as a closed subpath. The area will always be a positive value.
///
/// The area centroid is the center of mass for the area of a solid shape's interior.
/// An infinitely flat material forming the subpath's closed shape would balance at this point.
///
/// It will return `None` if no manipulator is present. If the area is less than `error`, it will return `Some((DVec2::NAN, 0.))`.
///
/// Because the calculation of area and centroid for self-intersecting path requires finding the intersections, the following parameters are used:
/// - `error` - For intersections with non-linear beziers, `error` defines the threshold for bounding boxes to be considered an intersection point.
/// - `minimum_separation` - the minimum difference two adjacent `t`-values must have when comparing adjacent `t`-values in sorted order.
///
/// If the comparison condition is not satisfied, the function takes the larger `t`-value of the two.
///
/// **NOTE**: if an intersection were to occur within an `error` distance away from an anchor point, the algorithm will filter that intersection out.
pub fn area_centroid_and_area(&self, error: Option<f64>, minimum_separation: Option<f64>) -> Option<(DVec2, f64)> {
let all_intersections = self.all_self_intersections(error, minimum_separation);
let mut current_sign: f64 = 1.;
let (x_sum, y_sum, area) = self
.iter_closed()
.enumerate()
.map(|(index, bezier)| {
let (f_x, f_y) = bezier.parametric_polynomial();
let (f_x, f_y) = (f_x.as_size::<10>().unwrap(), f_y.as_size::<10>().unwrap());
let f_y_prime = f_y.derivative();
let f_x_prime = f_x.derivative();
let f_xy = &f_x * &f_y;
let mut x_part = &f_xy * &f_x_prime;
let mut y_part = &f_xy * &f_y_prime;
let mut area_part = &f_x * &f_y_prime;
x_part.antiderivative_mut();
y_part.antiderivative_mut();
area_part.antiderivative_mut();
let mut curve_sum_x = -current_sign * x_part.eval(0.);
let mut curve_sum_y = -current_sign * y_part.eval(0.);
let mut curve_sum_area = -current_sign * area_part.eval(0.);
for (_, t) in all_intersections.iter().filter(|(i, _)| *i == index) {
curve_sum_x += 2. * current_sign * x_part.eval(*t);
curve_sum_y += 2. * current_sign * y_part.eval(*t);
curve_sum_area += 2. * current_sign * area_part.eval(*t);
current_sign *= -1.;
}
curve_sum_x += current_sign * x_part.eval(1.);
curve_sum_y += current_sign * y_part.eval(1.);
curve_sum_area += current_sign * area_part.eval(1.);
(-curve_sum_x, curve_sum_y, curve_sum_area)
})
.reduce(|(x1, y1, area1), (x2, y2, area2)| (x1 + x2, y1 + y2, area1 + area2))?;
if area.abs() < error.unwrap_or(MAX_ABSOLUTE_DIFFERENCE) {
return Some((DVec2::NAN, 0.));
}
Some((DVec2::new(x_sum / area, y_sum / area), area.abs()))
}
/// Attempts to return the area centroid of the `Subpath` always considering it as a closed subpath. Falls back to length centroid if the area is zero.
///
/// The area centroid is the center of mass for the area of a solid shape's interior.
/// An infinitely flat material forming the subpath's closed shape would balance at this point.
///
/// It will return `None` if no manipulator is present.
/// Because the calculation of centroid for self-intersecting path requires finding the intersections, the following parameters are used:
/// - `error` - For intersections with non-linear beziers, `error` defines the threshold for bounding boxes to be considered an intersection point.
/// - `minimum_separation` - the minimum difference two adjacent `t`-values must have when comparing adjacent `t`-values in sorted order.
/// - `tolerance` - Tolerance used to approximate the curve if it falls back to length centroid.
///
/// If the comparison condition is not satisfied, the function takes the larger `t`-value of the two
///
/// **NOTE**: if an intersection were to occur within an `error` distance away from an anchor point, the algorithm will filter that intersection out.
/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#subpath/area-centroid/solo" title="Area Centroid Demo"></iframe>
pub fn area_centroid(&self, error: Option<f64>, minimum_separation: Option<f64>, tolerance: Option<f64>) -> Option<DVec2> {
let (centroid, area) = self.area_centroid_and_area(error, minimum_separation)?;
if area != 0. {
Some(centroid)
} else {
self.length_centroid_and_length(tolerance, true).map(|(centroid, _)| centroid)
}
}
/// Converts from a subpath (composed of multiple segments) to a point along a certain segment represented.
/// The returned tuple represents the segment index and the `t` value along that segment.
/// Both the input global `t` value and the output `t` value are in euclidean space, meaning there is a constant rate of change along the arc length.
pub fn global_euclidean_to_local_euclidean(&self, global_t: f64, lengths: &[f64], total_length: f64) -> (usize, f64) {
let mut accumulator = 0.;
for (index, length) in lengths.iter().enumerate() {
let length_ratio = length / total_length;
if (index == 0 || accumulator <= global_t) && global_t <= accumulator + length_ratio {
return (index, ((global_t - accumulator) / length_ratio).clamp(0., 1.));
}
accumulator += length_ratio;
}
(self.len() - 2, 1.)
}
/// Convert a [SubpathTValue] to a parametric `(segment_index, t)` tuple.
/// - Asserts that `t` values contained within the `SubpathTValue` argument lie in the range [0, 1].
/// - If the argument is a variant containing a `segment_index`, asserts that the index references a valid segment on the curve.
pub(crate) fn t_value_to_parametric(&self, t: SubpathTValue) -> (usize, f64) {
assert!(self.len_segments() >= 1);
match t {
SubpathTValue::Parametric { segment_index, t } => {
assert!((0.0..=1.).contains(&t));
assert!((0..self.len_segments()).contains(&segment_index));
(segment_index, t)
}
SubpathTValue::GlobalParametric(global_t) => {
assert!((0.0..=1.).contains(&global_t));
if global_t == 1. {
return (self.len_segments() - 1, 1.);
}
let scaled_t = global_t * self.len_segments() as f64;
let segment_index = scaled_t.floor() as usize;
let t = scaled_t - segment_index as f64;
(segment_index, t)
}
SubpathTValue::Euclidean { segment_index, t } => {
assert!((0.0..=1.).contains(&t));
assert!((0..self.len_segments()).contains(&segment_index));
(segment_index, self.get_segment(segment_index).unwrap().euclidean_to_parametric(t, DEFAULT_EUCLIDEAN_ERROR_BOUND))
}
SubpathTValue::GlobalEuclidean(t) => {
let lengths = self.iter().map(|bezier| bezier.length(None)).collect::<Vec<f64>>();
let total_length: f64 = lengths.iter().sum();
let (segment_index, segment_t_euclidean) = self.global_euclidean_to_local_euclidean(t, lengths.as_slice(), total_length);
let segment_t_parametric = self.get_segment(segment_index).unwrap().euclidean_to_parametric(segment_t_euclidean, DEFAULT_EUCLIDEAN_ERROR_BOUND);
(segment_index, segment_t_parametric)
}
SubpathTValue::EuclideanWithinError { segment_index, t, error } => {
assert!((0.0..=1.).contains(&t));
assert!((0..self.len_segments()).contains(&segment_index));
(segment_index, self.get_segment(segment_index).unwrap().euclidean_to_parametric(t, error))
}
SubpathTValue::GlobalEuclideanWithinError { t, error } => {
let lengths = self.iter().map(|bezier| bezier.length(None)).collect::<Vec<f64>>();
let total_length: f64 = lengths.iter().sum();
let (segment_index, segment_t) = self.global_euclidean_to_local_euclidean(t, lengths.as_slice(), total_length);
(segment_index, self.get_segment(segment_index).unwrap().euclidean_to_parametric(segment_t, error))
}
}
}
/// Returns the segment index and `t` value that corresponds to the closest point on the curve to the provided point.
/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#subpath/project/solo" title="Project Demo"></iframe>
pub fn project(&self, point: DVec2) -> Option<(usize, f64)> {
if self.is_empty() {
return None;
}
// TODO: Optimization opportunity: Filter out segments which are *definitely* not the closest to the given point
let (index, (_, project_t)) = self
.iter()
.map(|bezier| {
let project_t = bezier.project(point);
(bezier.evaluate(TValue::Parametric(project_t)).distance(point), project_t)
})
.enumerate()
.min_by(|(_, (distance1, _)), (_, (distance2, _))| distance1.total_cmp(distance2))
.unwrap_or((0, (0., 0.))); // If the Subpath contains only a single manipulator group, returns (0, 0.)
Some((index, project_t))
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::consts::MAX_ABSOLUTE_DIFFERENCE;
use crate::utils::f64_compare;
#[test]
fn length_quadratic() {
let start = DVec2::new(20., 30.);
let middle = DVec2::new(80., 90.);
let end = DVec2::new(60., 45.);
let handle1 = DVec2::new(75., 85.);
let handle2 = DVec2::new(40., 30.);
let handle3 = DVec2::new(10., 10.);
let bezier1 = Bezier::from_quadratic_dvec2(start, handle1, middle);
let bezier2 = Bezier::from_quadratic_dvec2(middle, handle2, end);
let bezier3 = Bezier::from_quadratic_dvec2(end, handle3, start);
let mut subpath = Subpath::new(
vec![
ManipulatorGroup {
anchor: start,
in_handle: None,
out_handle: Some(handle1),
id: EmptyId,
},
ManipulatorGroup {
anchor: middle,
in_handle: None,
out_handle: Some(handle2),
id: EmptyId,
},
ManipulatorGroup {
anchor: end,
in_handle: None,
out_handle: Some(handle3),
id: EmptyId,
},
],
false,
);
assert_eq!(subpath.length(None), bezier1.length(None) + bezier2.length(None));
subpath.closed = true;
assert_eq!(subpath.length(None), bezier1.length(None) + bezier2.length(None) + bezier3.length(None));
}
#[test]
fn length_mixed() {
let start = DVec2::new(20., 30.);
let middle = DVec2::new(70., 70.);
let end = DVec2::new(60., 45.);
let handle1 = DVec2::new(75., 85.);
let handle2 = DVec2::new(40., 30.);
let handle3 = DVec2::new(10., 10.);
let linear_bezier = Bezier::from_linear_dvec2(start, middle);
let quadratic_bezier = Bezier::from_quadratic_dvec2(middle, handle1, end);
let cubic_bezier = Bezier::from_cubic_dvec2(end, handle2, handle3, start);
let mut subpath = Subpath::new(
vec![
ManipulatorGroup {
anchor: start,
in_handle: Some(handle3),
out_handle: None,
id: EmptyId,
},
ManipulatorGroup {
anchor: middle,
in_handle: None,
out_handle: Some(handle1),
id: EmptyId,
},
ManipulatorGroup {
anchor: end,
in_handle: None,
out_handle: Some(handle2),
id: EmptyId,
},
],
false,
);
assert_eq!(subpath.length(None), linear_bezier.length(None) + quadratic_bezier.length(None));
subpath.closed = true;
assert_eq!(subpath.length(None), linear_bezier.length(None) + quadratic_bezier.length(None) + cubic_bezier.length(None));
}
#[test]
fn length_centroid() {
let start = DVec2::new(0., 0.);
let end = DVec2::new(1., 1.);
let handle = DVec2::new(0., 1.);
let mut subpath = Subpath::new(
vec![
ManipulatorGroup {
anchor: start,
in_handle: None,
out_handle: Some(handle),
id: EmptyId,
},
ManipulatorGroup {
anchor: end,
in_handle: None,
out_handle: None,
id: EmptyId,
},
],
false,
);
let expected_centroid = DVec2::new(0.4153039799983826, 0.5846960200016174);
let epsilon = 0.00001;
assert!(subpath.length_centroid_and_length(None, true).unwrap().0.abs_diff_eq(expected_centroid, epsilon));
subpath.closed = true;
assert!(subpath.length_centroid_and_length(None, true).unwrap().0.abs_diff_eq(expected_centroid, epsilon));
}
#[test]
fn area() {
let start = DVec2::new(0., 0.);
let end = DVec2::new(1., 1.);
let handle = DVec2::new(0., 1.);
let mut subpath = Subpath::new(
vec![
ManipulatorGroup {
anchor: start,
in_handle: None,
out_handle: Some(handle),
id: EmptyId,
},
ManipulatorGroup {
anchor: end,
in_handle: None,
out_handle: None,
id: EmptyId,
},
],
false,
);
let expected_area = 1. / 3.;
let epsilon = 0.00001;
assert!((subpath.area(Some(0.001), Some(0.001)) - expected_area).abs() < epsilon);
subpath.closed = true;
assert!((subpath.area(Some(0.001), Some(0.001)) - expected_area).abs() < epsilon);
}
#[test]
fn area_centroid() {
let start = DVec2::new(0., 0.);
let end = DVec2::new(1., 1.);
let handle = DVec2::new(0., 1.);
let mut subpath = Subpath::new(
vec![
ManipulatorGroup {
anchor: start,
in_handle: None,
out_handle: Some(handle),
id: EmptyId,
},
ManipulatorGroup {
anchor: end,
in_handle: None,
out_handle: None,
id: EmptyId,
},
],
false,
);
let expected_centroid = DVec2::new(0.4, 0.6);
let epsilon = 0.00001;
assert!(subpath.area_centroid(Some(0.001), Some(0.001), None).unwrap().abs_diff_eq(expected_centroid, epsilon));
subpath.closed = true;
assert!(subpath.area_centroid(Some(0.001), Some(0.001), None).unwrap().abs_diff_eq(expected_centroid, epsilon));
}
#[test]
fn t_value_to_parametric_global_parametric_open_subpath() {
let mock_manipulator_group = ManipulatorGroup {
anchor: DVec2::new(0., 0.),
in_handle: None,
out_handle: None,
id: EmptyId,
};
let open_subpath = Subpath {
manipulator_groups: vec![mock_manipulator_group; 5],
closed: false,
};
let (segment_index, t) = open_subpath.t_value_to_parametric(SubpathTValue::GlobalParametric(0.7));
assert_eq!(segment_index, 2);
assert!(f64_compare(t, 0.8, MAX_ABSOLUTE_DIFFERENCE));
// The start and end points of an open subpath are NOT equivalent
assert_eq!(open_subpath.t_value_to_parametric(SubpathTValue::GlobalParametric(0.)), (0, 0.));
assert_eq!(open_subpath.t_value_to_parametric(SubpathTValue::GlobalParametric(1.)), (3, 1.));
}
#[test]
fn t_value_to_parametric_global_parametric_closed_subpath() {
let mock_manipulator_group = ManipulatorGroup {
anchor: DVec2::new(0., 0.),
in_handle: None,
out_handle: None,
id: EmptyId,
};
let closed_subpath = Subpath {
manipulator_groups: vec![mock_manipulator_group; 5],
closed: true,
};
let (segment_index, t) = closed_subpath.t_value_to_parametric(SubpathTValue::GlobalParametric(0.7));
assert_eq!(segment_index, 3);
assert!(f64_compare(t, 0.5, MAX_ABSOLUTE_DIFFERENCE));
// The start and end points of a closed subpath are equivalent
assert_eq!(closed_subpath.t_value_to_parametric(SubpathTValue::GlobalParametric(0.)), (0, 0.));
assert_eq!(closed_subpath.t_value_to_parametric(SubpathTValue::GlobalParametric(1.)), (4, 1.));
}
#[test]
fn exact_start_end() {
let start = DVec2::new(20., 30.);
let end = DVec2::new(60., 45.);
let handle = DVec2::new(75., 85.);
let subpath: Subpath<EmptyId> = Subpath::from_bezier(&Bezier::from_quadratic_dvec2(start, handle, end));
assert_eq!(subpath.evaluate(SubpathTValue::GlobalEuclidean(0.)), start);
assert_eq!(subpath.evaluate(SubpathTValue::GlobalEuclidean(1.)), end);
}
}
|