File size: 44,685 Bytes
2409829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 |
use super::*;
use crate::TValue;
use crate::consts::MAX_ABSOLUTE_DIFFERENCE;
use crate::utils::{SubpathTValue, compute_circular_subpath_details, is_rectangle_inside_other, line_intersection};
use glam::{DAffine2, DMat2, DVec2};
use std::f64::consts::PI;
impl<PointId: crate::Identifier> Subpath<PointId> {
/// Calculate the point on the subpath based on the parametric `t`-value provided.
/// Expects `t` to be within the inclusive range `[0, 1]`.
/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#subpath/evaluate/solo" title="Evaluate Demo"></iframe>
pub fn evaluate(&self, t: SubpathTValue) -> DVec2 {
let (segment_index, t) = self.t_value_to_parametric(t);
self.get_segment(segment_index).unwrap().evaluate(TValue::Parametric(t))
}
/// Calculates the intersection points the subpath has with a given curve and returns a list of `(usize, f64)` tuples,
/// where the `usize` represents the index of the curve in the subpath, and the `f64` represents the `t`-value local to
/// that curve where the intersection occurred.
/// Expects the following:
/// - `other`: a [Bezier] curve to check intersections against
/// - `error`: an optional f64 value to provide an error bound
/// - `minimum_separation`: the minimum difference two adjacent `t`-values must have when comparing adjacent `t`-values in sorted order.
///
/// If the comparison condition is not satisfied, the function takes the larger `t`-value of the two.
/// <iframe frameBorder="0" width="100%" height="375px" src="https://graphite.rs/libraries/bezier-rs#subpath/intersect-linear/solo" title="Intersection Demo"></iframe>
///
/// <iframe frameBorder="0" width="100%" height="375px" src="https://graphite.rs/libraries/bezier-rs#subpath/intersect-quadratic/solo" title="Intersection Demo"></iframe>
///
/// <iframe frameBorder="0" width="100%" height="375px" src="https://graphite.rs/libraries/bezier-rs#subpath/intersect-cubic/solo" title="Intersection Demo"></iframe>
pub fn intersections(&self, other: &Bezier, error: Option<f64>, minimum_separation: Option<f64>) -> Vec<(usize, f64)> {
self.iter()
.enumerate()
.flat_map(|(index, bezier)| bezier.intersections(other, error, minimum_separation).into_iter().map(|t| (index, t)).collect::<Vec<(usize, f64)>>())
.collect()
}
/// Calculates the intersection points the subpath has with another given subpath and returns a list of global parametric `t`-values.
/// This function expects the following:
/// - other: a [Bezier] curve to check intersections against
/// - error: an optional f64 value to provide an error bound
pub fn subpath_intersections(&self, other: &Subpath<PointId>, error: Option<f64>, minimum_separation: Option<f64>) -> Vec<(usize, f64)> {
let mut intersection_t_values: Vec<(usize, f64)> = other.iter().flat_map(|bezier| self.intersections(&bezier, error, minimum_separation)).collect();
intersection_t_values.sort_by(|a, b| a.partial_cmp(b).unwrap());
intersection_t_values
}
/// Returns how many times a given ray intersects with this subpath. (`ray_direction` does not need to be normalized.)
/// If this needs to be called frequently with a ray of the same rotation angle, consider instead using [`ray_test_crossings_count_prerotated`].
pub fn ray_test_crossings_count(&self, ray_start: DVec2, ray_direction: DVec2) -> usize {
self.iter().map(|bezier| bezier.ray_test_crossings(ray_start, ray_direction).count()).sum()
}
/// Returns how many times a given ray intersects with this subpath. (`ray_direction` does not need to be normalized.)
/// This version of the function is for better performance when calling it frequently without needing to change the rotation between each call.
/// If that isn't important, use [`ray_test_crossings_count`] which provides an easier interface by taking a ray direction vector.
/// Instead, this version requires a rotation matrix for the ray's rotation and a prerotated version of this subpath that has had its rotation applied.
pub fn ray_test_crossings_count_prerotated(&self, ray_start: DVec2, rotation_matrix: DMat2, rotated_subpath: &Self) -> usize {
self.iter()
.zip(rotated_subpath.iter())
.map(|(bezier, rotated_bezier)| bezier.ray_test_crossings_prerotated(ray_start, rotation_matrix, rotated_bezier).count())
.sum()
}
/// Returns true if the given point is inside this subpath. Open paths are NOT automatically closed so you'll need to call `set_closed(true)` before calling this.
/// Self-intersecting subpaths use the `evenodd` fill rule for checking in/outside-ness: <https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/fill-rule>.
/// If this needs to be called frequently, consider instead using [`point_inside_prerotated`] and moving this function's setup code into your own logic before the repeated call.
pub fn point_inside(&self, point: DVec2) -> bool {
// The directions use prime numbers to reduce the likelihood of running across two anchor points simultaneously
const SIN_13DEG: f64 = 0.22495105434;
const COS_13DEG: f64 = 0.97437006478;
const DIRECTION1: DVec2 = DVec2::new(SIN_13DEG, COS_13DEG);
const DIRECTION2: DVec2 = DVec2::new(-COS_13DEG, -SIN_13DEG);
// We (inefficiently) check for odd crossings in two directions and make sure they agree to reduce how often anchor points cause a double-increment
let test1 = self.ray_test_crossings_count(point, DIRECTION1) % 2 == 1;
let test2 = self.ray_test_crossings_count(point, DIRECTION2) % 2 == 1;
test1 && test2
}
/// Returns true if the given point is inside this subpath. Open paths are NOT automatically closed so you'll need to call `set_closed(true)` before calling this.
/// Self-intersecting subpaths use the `evenodd` fill rule for checking in/outside-ness: <https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/fill-rule>.
/// This version of the function is for better performance when calling it frequently because it lets the caller precompute the rotations once instead of every call.
/// If that isn't important, use [`point_inside`] which provides an easier interface.
/// Instead, this version requires a pair of rotation matrices for the ray's rotation and a pair of prerotated versions of this subpath.
/// They should face in different directions that are unlikely to align in the real world. Consider using the following rotations:
/// ```rs
/// const SIN_13DEG: f64 = 0.22495105434;
/// const COS_13DEG: f64 = 0.97437006478;
/// const DIRECTION1: DVec2 = DVec2::new(SIN_13DEG, COS_13DEG);
/// const DIRECTION2: DVec2 = DVec2::new(-COS_13DEG, -SIN_13DEG);
/// ```
pub fn point_inside_prerotated(&self, point: DVec2, rotation_matrix1: DMat2, rotation_matrix2: DMat2, rotated_subpath1: &Self, rotated_subpath2: &Self) -> bool {
// We (inefficiently) check for odd crossings in two directions and make sure they agree to reduce how often anchor points cause a double-increment
let test1 = self.ray_test_crossings_count_prerotated(point, rotation_matrix1, rotated_subpath1) % 2 == 1;
let test2 = self.ray_test_crossings_count_prerotated(point, rotation_matrix2, rotated_subpath2) % 2 == 1;
test1 && test2
}
/// Computes the winding number contribution of the subpath.
pub fn winding_order(&self, point: DVec2) -> i32 {
self.iter().map(|segment| segment.winding(point)).sum()
}
/// Returns a list of `t` values that correspond to the self intersection points of the subpath. For each intersection point, the returned `t` value is the smaller of the two that correspond to the point.
/// - `error` - For intersections with non-linear beziers, `error` defines the threshold for bounding boxes to be considered an intersection point.
/// - `minimum_separation`: the minimum difference two adjacent `t`-values must have when comparing adjacent `t`-values in sorted order.
///
/// If the comparison condition is not satisfied, the function takes the larger `t`-value of the two
///
/// **NOTE**: if an intersection were to occur within an `error` distance away from an anchor point, the algorithm will filter that intersection out.
/// <iframe frameBorder="0" width="100%" height="375px" src="https://graphite.rs/libraries/bezier-rs#subpath/intersect-self/solo" title="Self-Intersection Demo"></iframe>
pub fn self_intersections(&self, error: Option<f64>, minimum_separation: Option<f64>) -> Vec<(usize, f64)> {
let mut intersections_vec = Vec::new();
let err = error.unwrap_or(MAX_ABSOLUTE_DIFFERENCE);
// TODO: optimization opportunity - this for-loop currently compares all intersections with all curve-segments in the subpath collection
self.iter().enumerate().for_each(|(i, other)| {
intersections_vec.extend(other.self_intersections(error, minimum_separation).iter().map(|value| (i, value[0])));
self.iter().enumerate().skip(i + 1).for_each(|(j, curve)| {
intersections_vec.extend(
curve
.intersections(&other, error, minimum_separation)
.iter()
.filter(|&value| value > &err && (1. - value) > err)
.map(|value| (j, *value)),
);
});
});
intersections_vec
}
/// Returns a list of `t` values that correspond to all the self intersection points of the subpath always considering it as a closed subpath. The index and `t` value of both will be returned that corresponds to a point.
/// The points will be sorted based on their index and `t` repsectively.
/// - `error` - For intersections with non-linear beziers, `error` defines the threshold for bounding boxes to be considered an intersection point.
/// - `minimum_separation`: the minimum difference two adjacent `t`-values must have when comparing adjacent `t`-values in sorted order.
///
/// If the comparison condition is not satisfied, the function takes the larger `t`-value of the two
///
/// **NOTE**: if an intersection were to occur within an `error` distance away from an anchor point, the algorithm will filter that intersection out.
pub fn all_self_intersections(&self, error: Option<f64>, minimum_separation: Option<f64>) -> Vec<(usize, f64)> {
let mut intersections_vec = Vec::new();
let err = error.unwrap_or(MAX_ABSOLUTE_DIFFERENCE);
let num_curves = self.len();
// TODO: optimization opportunity - this for-loop currently compares all intersections with all curve-segments in the subpath collection
self.iter_closed().enumerate().for_each(|(i, other)| {
intersections_vec.extend(other.self_intersections(error, minimum_separation).iter().flat_map(|value| [(i, value[0]), (i, value[1])]));
self.iter_closed().enumerate().skip(i + 1).for_each(|(j, curve)| {
intersections_vec.extend(
curve
.all_intersections(&other, error, minimum_separation)
.iter()
.filter(|&value| (j != i + 1 || value[0] > err || (1. - value[1]) > err) && (j != num_curves - 1 || i != 0 || value[1] > err || (1. - value[0]) > err))
.flat_map(|value| [(j, value[0]), (i, value[1])]),
);
});
});
intersections_vec.sort_by(|a, b| a.partial_cmp(b).unwrap());
intersections_vec
}
/// Calculates the intersection points the subpath has with a given rectangle and returns a list of `(usize, f64)` tuples,
/// where the `usize` represents the index of the curve in the subpath, and the `f64` represents the `t`-value local to
/// that curve where the intersection occurred.
/// Expects the following:
/// - `corner1`: any corner of the axis-aligned box to intersect with
/// - `corner2`: the corner opposite to `corner1`
/// - `error`: an optional f64 value to provide an error bound
/// - `minimum_separation`: the minimum difference two adjacent `t`-values must have when comparing adjacent `t`-values in sorted order.
///
/// If the comparison condition is not satisfied, the function takes the larger `t`-value of the two.
/// <iframe frameBorder="0" width="100%" height="375px" src="https://graphite.rs/libraries/bezier-rs#subpath/intersect-rectangle/solo" title="Intersection Demo"></iframe>
pub fn rectangle_intersections(&self, corner1: DVec2, corner2: DVec2, error: Option<f64>, minimum_separation: Option<f64>) -> Vec<(usize, f64)> {
[
Bezier::from_linear_coordinates(corner1.x, corner1.y, corner2.x, corner1.y),
Bezier::from_linear_coordinates(corner2.x, corner1.y, corner2.x, corner2.y),
Bezier::from_linear_coordinates(corner2.x, corner2.y, corner1.x, corner2.y),
Bezier::from_linear_coordinates(corner1.x, corner2.y, corner1.x, corner1.y),
]
.iter()
.flat_map(|bezier| self.intersections(bezier, error, minimum_separation))
.collect()
}
/// Checks if any intersections exist between this subpath and the four edges of the rectangle defined by the top-left `corner1` and bottom-right `corner2`.
/// This is faster than calling [`rectangle_intersections`]`.len()` because it short-circuits as soon as an intersection is found.
pub fn rectangle_intersections_exist(&self, corner1: DVec2, corner2: DVec2) -> bool {
let rotate_by_90deg = |point| DMat2::from_angle(std::f64::consts::FRAC_PI_2) * point;
for bezier in self.iter() {
// Check that the two bounding boxes don't intersect, since we can avoid doing intersection's cubic root finding in that case
let [bezier_corner1, bezier_corner2] = bezier.bounding_box_of_anchors_and_handles();
if !(((corner1.x < bezier_corner1.x) && (bezier_corner1.x < corner2.x) || (corner1.x < bezier_corner2.x) && (bezier_corner2.x < corner2.x))
&& corner1.y < bezier_corner2.y
&& corner2.y > bezier_corner1.y
|| ((corner1.y < bezier_corner1.y) && (bezier_corner1.y < corner2.y) || (corner1.y < bezier_corner2.y) && (bezier_corner2.y < corner2.y))
&& corner1.x < bezier_corner2.x
&& corner2.x > bezier_corner1.x)
{
continue;
}
// Original rotation axis
if bezier.line_test_crossings_prerotated(corner1, DMat2::IDENTITY, bezier).any(|intersection_point| {
let (_, y) = bezier.unrestricted_parametric_evaluate(intersection_point).into();
y >= corner1.y && y <= corner2.y
}) {
return true;
}
if bezier.line_test_crossings_prerotated(corner2, DMat2::IDENTITY, bezier).any(|intersection_point| {
let (_, y) = bezier.unrestricted_parametric_evaluate(intersection_point).into();
y >= corner1.y && y <= corner2.y
}) {
return true;
}
// Perpendicular to original rotation axis
let rotated_bezier = bezier.apply_transformation(rotate_by_90deg);
if bezier.line_test_crossings_prerotated(corner1, DMat2::IDENTITY, rotated_bezier).any(|intersection_point| {
let (x, _) = bezier.unrestricted_parametric_evaluate(intersection_point).into();
x >= corner1.x && x <= corner2.x
}) {
return true;
}
if bezier.line_test_crossings_prerotated(corner2, DMat2::IDENTITY, rotated_bezier).any(|intersection_point| {
let (x, _) = bezier.unrestricted_parametric_evaluate(intersection_point).into();
x >= corner1.x && x <= corner2.x
}) {
return true;
}
}
false
}
/// Returns `true` if this subpath is completely inside the `other` subpath.
/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#subpath/inside-other/solo" title="Inside Other Subpath Demo"></iframe>
pub fn is_inside_subpath(&self, other: &Subpath<PointId>, error: Option<f64>, minimum_separation: Option<f64>) -> bool {
// Eliminate any possibility of one being inside the other, if either of them is empty
if self.is_empty() || other.is_empty() {
return false;
}
// Safe to unwrap because the subpath is not empty
let inner_bbox = self.bounding_box().unwrap();
let outer_bbox = other.bounding_box().unwrap();
// Eliminate this subpath if its bounding box is not completely inside the other subpath's bounding box.
// Reasoning:
// If the (min x, min y) of the inner subpath is less than or equal to the (min x, min y) of the outer subpath,
// or if the (min x, min y) of the inner subpath is greater than or equal to the (max x, max y) of the outer subpath,
// then the inner subpath is intersecting with or outside the outer subpath. The same logic applies for (max x, max y).
if !is_rectangle_inside_other(inner_bbox, outer_bbox) {
return false;
}
// Eliminate this subpath if any of its anchors are outside the other subpath.
for anchors in self.anchors() {
if !other.contains_point(anchors) {
return false;
}
}
// Eliminate this subpath if it intersects with the other subpath.
if !self.subpath_intersections(other, error, minimum_separation).is_empty() {
return false;
}
// At this point:
// (1) This subpath's bounding box is inside the other subpath's bounding box,
// (2) Its anchors are inside the other subpath, and
// (3) It is not intersecting with the other subpath.
// Hence, this subpath is completely inside the given other subpath.
true
}
/// Returns a normalized unit vector representing the tangent on the subpath based on the parametric `t`-value provided.
/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#subpath/tangent/solo" title="Tangent Demo"></iframe>
pub fn tangent(&self, t: SubpathTValue) -> DVec2 {
let (segment_index, t) = self.t_value_to_parametric(t);
self.get_segment(segment_index).unwrap().tangent(TValue::Parametric(t))
}
/// Returns a normalized unit vector representing the direction of the normal on the subpath based on the parametric `t`-value provided.
/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#subpath/normal/solo" title="Normal Demo"></iframe>
pub fn normal(&self, t: SubpathTValue) -> DVec2 {
let (segment_index, t) = self.t_value_to_parametric(t);
self.get_segment(segment_index).unwrap().normal(TValue::Parametric(t))
}
/// Returns two lists of `t`-values representing the local extrema of the `x` and `y` parametric subpaths respectively.
/// The list of `t`-values returned are filtered such that they fall within the range `[0, 1]`.
/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#subpath/local-extrema/solo" title="Local Extrema Demo"></iframe>
pub fn local_extrema(&self) -> [Vec<f64>; 2] {
let number_of_curves = self.len_segments() as f64;
// TODO: Consider the shared point between adjacent beziers.
self.iter().enumerate().fold([Vec::new(), Vec::new()], |mut acc, elem| {
let [x, y] = elem.1.local_extrema();
// Convert t-values of bezier curve to t-values of subpath
acc[0].extend(x.map(|t| ((elem.0 as f64) + t) / number_of_curves).collect::<Vec<f64>>());
acc[1].extend(y.map(|t| ((elem.0 as f64) + t) / number_of_curves).collect::<Vec<f64>>());
acc
})
}
/// Return the min and max corners that represent the bounding box of the subpath. Return `None` if the subpath is empty.
/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#subpath/bounding-box/solo" title="Bounding Box Demo"></iframe>
pub fn bounding_box(&self) -> Option<[DVec2; 2]> {
self.iter().map(|bezier| bezier.bounding_box()).reduce(|bbox1, bbox2| [bbox1[0].min(bbox2[0]), bbox1[1].max(bbox2[1])])
}
/// Return the min and max corners that represent the bounding box of the subpath, after a given affine transform.
pub fn bounding_box_with_transform(&self, transform: glam::DAffine2) -> Option<[DVec2; 2]> {
self.iter()
.map(|bezier| bezier.apply_transformation(|v| transform.transform_point2(v)).bounding_box())
.reduce(|bbox1, bbox2| [bbox1[0].min(bbox2[0]), bbox1[1].max(bbox2[1])])
}
/// Return the min and max corners that represent the loose bounding box of the subpath (bounding box of all handles and anchors).
pub fn loose_bounding_box(&self) -> Option<[DVec2; 2]> {
self.manipulator_groups
.iter()
.flat_map(|group| [group.in_handle, group.out_handle, Some(group.anchor)])
.flatten()
.map(|pos| [pos, pos])
.reduce(|bbox1, bbox2| [bbox1[0].min(bbox2[0]), bbox1[1].max(bbox2[1])])
}
/// Return the min and max corners that represent the loose bounding box of the subpath, after a given affine transform.
pub fn loose_bounding_box_with_transform(&self, transform: glam::DAffine2) -> Option<[DVec2; 2]> {
self.manipulator_groups
.iter()
.flat_map(|group| [group.in_handle, group.out_handle, Some(group.anchor)])
.flatten()
.map(|pos| transform.transform_point2(pos))
.map(|pos| [pos, pos])
.reduce(|bbox1, bbox2| [bbox1[0].min(bbox2[0]), bbox1[1].max(bbox2[1])])
}
/// Returns list of `t`-values representing the inflection points of the subpath.
/// The list of `t`-values returned are filtered such that they fall within the range `[0, 1]`.
/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#subpath/inflections/solo" title="Inflections Demo"></iframe>
pub fn inflections(&self) -> Vec<f64> {
let number_of_curves = self.len_segments() as f64;
let inflection_t_values: Vec<f64> = self
.iter()
.enumerate()
.flat_map(|(index, bezier)| {
bezier
.inflections()
.into_iter()
// Convert t-values of bezier curve to t-values of subpath
.map(move |t| ((index as f64) + t) / number_of_curves)
})
.collect();
// TODO: Consider the shared point between adjacent beziers.
inflection_t_values
}
/// Does a path contain a point? Based on the non zero winding
pub fn contains_point(&self, target_point: DVec2) -> bool {
self.iter().map(|bezier| bezier.winding(target_point)).sum::<i32>() != 0
}
/// Does a path contain a point? Based on the non zero winding. Automatically adds a linear segment if the subpath is not closed.
pub fn contains_point_autoclose(&self, target_point: DVec2) -> bool {
let mut winding = self.iter().map(|bezier| bezier.winding(target_point)).sum::<i32>();
if !self.closed {
if let [Some(first), Some(last)] = [self.manipulator_groups.first(), self.manipulator_groups.last()] {
winding += Bezier::from_linear_dvec2(first.anchor, last.anchor).winding(target_point);
}
}
winding != 0
}
/// Randomly places points across the filled surface of this subpath (which is assumed to be closed).
/// The `separation_disk_diameter` determines the minimum distance between all points from one another.
/// Conceptually, this works by "throwing a dart" at the subpath's bounding box and keeping the dart only if:
/// - It's inside the shape
/// - It's not closer than `separation_disk_diameter` to any other point from a previous accepted dart throw
///
/// This repeats until accepted darts fill all possible areas between one another.
///
/// While the conceptual process described above asymptotically slows down and is never guaranteed to produce a maximal set in finite time,
/// this is implemented with an algorithm that produces a maximal set in O(n) time. The slowest part is actually checking if points are inside the subpath shape.
pub fn poisson_disk_points(&self, separation_disk_diameter: f64, rng: impl FnMut() -> f64, subpaths: &[(Self, [DVec2; 2])], subpath_index: usize) -> Vec<DVec2> {
let Some(bounding_box) = self.bounding_box() else { return Vec::new() };
let (offset_x, offset_y) = bounding_box[0].into();
let (width, height) = (bounding_box[1] - bounding_box[0]).into();
// TODO: Optimize the following code and make it more robust
let mut shape = self.clone();
shape.set_closed(true);
shape.apply_transform(DAffine2::from_translation((-offset_x, -offset_y).into()));
let point_in_shape_checker = |point: DVec2| {
// Check against all paths the point is contained in to compute the correct winding number
let mut number = 0;
for (i, (shape, bb)) in subpaths.iter().enumerate() {
let point = point + bounding_box[0];
if bb[0].x > point.x || bb[0].y > point.y || bb[1].x < point.x || bb[1].y < point.y {
continue;
}
let winding = shape.winding_order(point);
if i == subpath_index && winding == 0 {
return false;
}
number += winding;
}
number != 0
};
let square_edges_intersect_shape_checker = |corner1: DVec2, size: f64| {
let corner2 = corner1 + DVec2::splat(size);
self.rectangle_intersections_exist(corner1, corner2)
};
let mut points = crate::poisson_disk::poisson_disk_sample(width, height, separation_disk_diameter, point_in_shape_checker, square_edges_intersect_shape_checker, rng);
for point in &mut points {
point.x += offset_x;
point.y += offset_y;
}
points
}
/// Returns the manipulator point that is needed for a miter join if it is possible.
/// - `miter_limit`: Defines a limit for the ratio between the miter length and the stroke width.
///
/// Alternatively, this can be interpreted as limiting the angle that the miter can form.
/// When the limit is exceeded, no manipulator group will be returned.
/// This value should be greater than 0. If not, the default of 4 will be used.
pub fn miter_line_join(&self, other: &Subpath<PointId>, miter_limit: Option<f64>) -> Option<ManipulatorGroup<PointId>> {
let miter_limit = match miter_limit {
Some(miter_limit) if miter_limit > f64::EPSILON => miter_limit,
_ => 4.,
};
// TODO: Besides returning None using the `?` operator, is there a more appropriate way to handle a `None` result from `get_segment`?
let in_segment = self.get_segment(self.len_segments().checked_sub(1)?)?;
let out_segment = other.get_segment(0)?;
let in_tangent = in_segment.tangent(TValue::Parametric(1.));
let out_tangent = out_segment.tangent(TValue::Parametric(0.));
if in_tangent == DVec2::ZERO || out_tangent == DVec2::ZERO {
// Avoid panic from normalizing zero vectors
// TODO: Besides returning None, is there a more appropriate way to handle this?
return None;
}
let normalized_in_tangent = in_tangent.normalize();
let normalized_out_tangent = out_tangent.normalize();
// The tangents must not be parallel for the miter join
if !normalized_in_tangent.abs_diff_eq(normalized_out_tangent, MAX_ABSOLUTE_DIFFERENCE) && !normalized_in_tangent.abs_diff_eq(-normalized_out_tangent, MAX_ABSOLUTE_DIFFERENCE) {
let intersection = line_intersection(in_segment.end(), in_tangent, out_segment.start(), out_tangent);
let start_to_intersection = intersection - in_segment.end();
let intersection_to_end = out_segment.start() - intersection;
if start_to_intersection == DVec2::ZERO || intersection_to_end == DVec2::ZERO {
// Avoid panic from normalizing zero vectors
// TODO: Besides returning None, is there a more appropriate way to handle this?
return None;
}
// Draw the miter join if the intersection occurs in the correct direction with respect to the path
if start_to_intersection.normalize().abs_diff_eq(in_tangent, MAX_ABSOLUTE_DIFFERENCE)
&& intersection_to_end.normalize().abs_diff_eq(out_tangent, MAX_ABSOLUTE_DIFFERENCE)
&& miter_limit > f64::EPSILON / (start_to_intersection.angle_to(-intersection_to_end).abs() / 2.).sin()
{
return Some(ManipulatorGroup {
anchor: intersection,
in_handle: None,
out_handle: None,
id: PointId::new(),
});
}
}
// If we can't draw the miter join, default to a bevel join
None
}
/// Returns the necessary information to create a round join with the provided center.
/// The returned items correspond to:
/// - The `out_handle` for the last manipulator group of `self`
/// - The new manipulator group to be added
/// - The `in_handle` for the first manipulator group of `other`
pub fn round_line_join(&self, other: &Subpath<PointId>, center: DVec2) -> (DVec2, ManipulatorGroup<PointId>, DVec2) {
let left = self.manipulator_groups[self.len() - 1].anchor;
let right = other.manipulator_groups[0].anchor;
let center_to_right = right - center;
let center_to_left = left - center;
let in_segment = self.len_segments().checked_sub(1).and_then(|segment| self.get_segment(segment));
let in_tangent = in_segment.map(|in_segment| in_segment.tangent(TValue::Parametric(1.)));
let mut angle = center_to_right.angle_to(center_to_left) / 2.;
let mut arc_point = center + DMat2::from_angle(angle).mul_vec2(center_to_right);
if in_tangent.map(|in_tangent| (arc_point - left).angle_to(in_tangent).abs()).unwrap_or_default() > PI / 2. {
angle = angle - PI * (if angle < 0. { -1. } else { 1. });
arc_point = center + DMat2::from_angle(angle).mul_vec2(center_to_right);
}
compute_circular_subpath_details(left, arc_point, right, center, Some(angle))
}
/// Returns the necessary information to create a round cap between the end of `self` and the beginning of `other`.
/// The returned items correspond to:
/// - The `out_handle` for the last manipulator group of `self`
/// - The new manipulator group to be added
/// - The `in_handle` for the first manipulator group of `other`
pub(crate) fn round_cap(&self, other: &Subpath<PointId>) -> (DVec2, ManipulatorGroup<PointId>, DVec2) {
let left = self.manipulator_groups[self.len() - 1].anchor;
let right = other.manipulator_groups[0].anchor;
let center = (right + left) / 2.;
let center_to_right = right - center;
let arc_point = center + center_to_right.perp();
compute_circular_subpath_details(left, arc_point, right, center, None)
}
/// Returns the two manipulator groups that create a square cap between the end of `self` and the beginning of `other`.
pub(crate) fn square_cap(&self, other: &Subpath<PointId>) -> [ManipulatorGroup<PointId>; 2] {
let left = self.manipulator_groups[self.len() - 1].anchor;
let right = other.manipulator_groups[0].anchor;
let center = (right + left) / 2.;
let center_to_right = right - center;
let translation = center_to_right.perp();
[ManipulatorGroup::new_anchor(left + translation), ManipulatorGroup::new_anchor(right + translation)]
}
/// Returns the curvature, a scalar value for the derivative at the point `t` along the subpath.
/// Curvature is 1 over the radius of a circle with an equivalent derivative.
/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#subpath/curvature/solo" title="Curvature Demo"></iframe>
pub fn curvature(&self, t: SubpathTValue) -> f64 {
let (segment_index, t) = self.t_value_to_parametric(t);
self.get_segment(segment_index).unwrap().curvature(TValue::Parametric(t))
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::Bezier;
use crate::consts::MAX_ABSOLUTE_DIFFERENCE;
use crate::utils;
use glam::DVec2;
fn normalize_t(n: i64, t: f64) -> f64 {
t * (n as f64) % 1.
}
#[test]
fn evaluate_one_subpath_curve() {
let start = DVec2::new(20., 30.);
let end = DVec2::new(60., 45.);
let handle = DVec2::new(75., 85.);
let bezier = Bezier::from_quadratic_dvec2(start, handle, end);
let subpath = Subpath::new(
vec![
ManipulatorGroup {
anchor: start,
in_handle: None,
out_handle: Some(handle),
id: EmptyId,
},
ManipulatorGroup {
anchor: end,
in_handle: None,
out_handle: Some(handle),
id: EmptyId,
},
],
false,
);
let t0 = 0.;
assert_eq!(subpath.evaluate(SubpathTValue::GlobalParametric(t0)), bezier.evaluate(TValue::Parametric(t0)));
let t1 = 0.25;
assert_eq!(subpath.evaluate(SubpathTValue::GlobalParametric(t1)), bezier.evaluate(TValue::Parametric(t1)));
let t2 = 0.50;
assert_eq!(subpath.evaluate(SubpathTValue::GlobalParametric(t2)), bezier.evaluate(TValue::Parametric(t2)));
let t3 = 1.;
assert_eq!(subpath.evaluate(SubpathTValue::GlobalParametric(t3)), bezier.evaluate(TValue::Parametric(t3)));
}
#[test]
fn evaluate_multiple_subpath_curves() {
let start = DVec2::new(20., 30.);
let middle = DVec2::new(70., 70.);
let end = DVec2::new(60., 45.);
let handle1 = DVec2::new(75., 85.);
let handle2 = DVec2::new(40., 30.);
let handle3 = DVec2::new(10., 10.);
let linear_bezier = Bezier::from_linear_dvec2(start, middle);
let quadratic_bezier = Bezier::from_quadratic_dvec2(middle, handle1, end);
let cubic_bezier = Bezier::from_cubic_dvec2(end, handle2, handle3, start);
let mut subpath = Subpath::new(
vec![
ManipulatorGroup {
anchor: start,
in_handle: Some(handle3),
out_handle: None,
id: EmptyId,
},
ManipulatorGroup {
anchor: middle,
in_handle: None,
out_handle: Some(handle1),
id: EmptyId,
},
ManipulatorGroup {
anchor: end,
in_handle: None,
out_handle: Some(handle2),
id: EmptyId,
},
],
false,
);
// Test open subpath
let mut n = (subpath.len() as i64) - 1;
let t0 = 0.;
assert!(
utils::dvec2_compare(
subpath.evaluate(SubpathTValue::GlobalParametric(t0)),
linear_bezier.evaluate(TValue::Parametric(normalize_t(n, t0))),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
let t1 = 0.25;
assert!(
utils::dvec2_compare(
subpath.evaluate(SubpathTValue::GlobalParametric(t1)),
linear_bezier.evaluate(TValue::Parametric(normalize_t(n, t1))),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
let t2 = 0.50;
assert!(
utils::dvec2_compare(
subpath.evaluate(SubpathTValue::GlobalParametric(t2)),
quadratic_bezier.evaluate(TValue::Parametric(normalize_t(n, t2))),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
let t3 = 0.75;
assert!(
utils::dvec2_compare(
subpath.evaluate(SubpathTValue::GlobalParametric(t3)),
quadratic_bezier.evaluate(TValue::Parametric(normalize_t(n, t3))),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
let t4 = 1.;
assert!(
utils::dvec2_compare(
subpath.evaluate(SubpathTValue::GlobalParametric(t4)),
quadratic_bezier.evaluate(TValue::Parametric(1.)),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
// Test closed subpath
subpath.closed = true;
n = subpath.len() as i64;
let t5 = 2. / 3.;
assert!(
utils::dvec2_compare(
subpath.evaluate(SubpathTValue::GlobalParametric(t5)),
cubic_bezier.evaluate(TValue::Parametric(normalize_t(n, t5))),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
let t6 = 1.;
assert!(
utils::dvec2_compare(
subpath.evaluate(SubpathTValue::GlobalParametric(t6)),
cubic_bezier.evaluate(TValue::Parametric(1.)),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
}
#[test]
fn intersection_linear_multiple_subpath_curves_test_one() {
// M 35 125 C 40 40 120 120 43 43 Q 175 90 145 150 Q 70 185 35 125 Z
let cubic_start = DVec2::new(35., 125.);
let cubic_handle_1 = DVec2::new(40., 40.);
let cubic_handle_2 = DVec2::new(120., 120.);
let cubic_end = DVec2::new(43., 43.);
let quadratic_1_handle = DVec2::new(175., 90.);
let quadratic_end = DVec2::new(145., 150.);
let quadratic_2_handle = DVec2::new(70., 185.);
let cubic_bezier = Bezier::from_cubic_dvec2(cubic_start, cubic_handle_1, cubic_handle_2, cubic_end);
let quadratic_bezier_1 = Bezier::from_quadratic_dvec2(cubic_end, quadratic_1_handle, quadratic_end);
let subpath = Subpath::new(
vec![
ManipulatorGroup {
anchor: cubic_start,
in_handle: None,
out_handle: Some(cubic_handle_1),
id: EmptyId,
},
ManipulatorGroup {
anchor: cubic_end,
in_handle: Some(cubic_handle_2),
out_handle: None,
id: EmptyId,
},
ManipulatorGroup {
anchor: quadratic_end,
in_handle: Some(quadratic_1_handle),
out_handle: Some(quadratic_2_handle),
id: EmptyId,
},
],
true,
);
let line = Bezier::from_linear_coordinates(150., 150., 20., 20.);
let cubic_intersections = cubic_bezier.intersections(&line, None, None);
let quadratic_1_intersections = quadratic_bezier_1.intersections(&line, None, None);
let subpath_intersections = subpath.intersections(&line, None, None);
assert!(
utils::dvec2_compare(
cubic_bezier.evaluate(TValue::Parametric(cubic_intersections[0])),
subpath.evaluate(SubpathTValue::Parametric {
segment_index: subpath_intersections[0].0,
t: subpath_intersections[0].1
}),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
assert!(
utils::dvec2_compare(
quadratic_bezier_1.evaluate(TValue::Parametric(quadratic_1_intersections[0])),
subpath.evaluate(SubpathTValue::Parametric {
segment_index: subpath_intersections[1].0,
t: subpath_intersections[1].1
}),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
assert!(
utils::dvec2_compare(
quadratic_bezier_1.evaluate(TValue::Parametric(quadratic_1_intersections[1])),
subpath.evaluate(SubpathTValue::Parametric {
segment_index: subpath_intersections[2].0,
t: subpath_intersections[2].1
}),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
}
#[test]
fn intersection_linear_multiple_subpath_curves_test_two() {
// M34 107 C40 40 120 120 102 29 Q175 90 129 171 Q70 185 34 107 Z
// M150 150 L 20 20
let cubic_start = DVec2::new(34., 107.);
let cubic_handle_1 = DVec2::new(40., 40.);
let cubic_handle_2 = DVec2::new(120., 120.);
let cubic_end = DVec2::new(102., 29.);
let quadratic_1_handle = DVec2::new(175., 90.);
let quadratic_end = DVec2::new(129., 171.);
let quadratic_2_handle = DVec2::new(70., 185.);
let cubic_bezier = Bezier::from_cubic_dvec2(cubic_start, cubic_handle_1, cubic_handle_2, cubic_end);
let quadratic_bezier_1 = Bezier::from_quadratic_dvec2(cubic_end, quadratic_1_handle, quadratic_end);
let subpath = Subpath::new(
vec![
ManipulatorGroup {
anchor: cubic_start,
in_handle: None,
out_handle: Some(cubic_handle_1),
id: EmptyId,
},
ManipulatorGroup {
anchor: cubic_end,
in_handle: Some(cubic_handle_2),
out_handle: None,
id: EmptyId,
},
ManipulatorGroup {
anchor: quadratic_end,
in_handle: Some(quadratic_1_handle),
out_handle: Some(quadratic_2_handle),
id: EmptyId,
},
],
true,
);
let line = Bezier::from_linear_coordinates(150., 150., 20., 20.);
let cubic_intersections = cubic_bezier.intersections(&line, None, None);
let quadratic_1_intersections = quadratic_bezier_1.intersections(&line, None, None);
let subpath_intersections = subpath.intersections(&line, None, None);
assert!(
utils::dvec2_compare(
cubic_bezier.evaluate(TValue::Parametric(cubic_intersections[0])),
subpath.evaluate(SubpathTValue::Parametric {
segment_index: subpath_intersections[0].0,
t: subpath_intersections[0].1
}),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
assert!(
utils::dvec2_compare(
quadratic_bezier_1.evaluate(TValue::Parametric(quadratic_1_intersections[0])),
subpath.evaluate(SubpathTValue::Parametric {
segment_index: subpath_intersections[1].0,
t: subpath_intersections[1].1
}),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
}
#[test]
fn intersection_linear_multiple_subpath_curves_test_three() {
// M35 125 C40 40 120 120 44 44 Q175 90 145 150 Q70 185 35 125 Z
let cubic_start = DVec2::new(35., 125.);
let cubic_handle_1 = DVec2::new(40., 40.);
let cubic_handle_2 = DVec2::new(120., 120.);
let cubic_end = DVec2::new(44., 44.);
let quadratic_1_handle = DVec2::new(175., 90.);
let quadratic_end = DVec2::new(145., 150.);
let quadratic_2_handle = DVec2::new(70., 185.);
let cubic_bezier = Bezier::from_cubic_dvec2(cubic_start, cubic_handle_1, cubic_handle_2, cubic_end);
let quadratic_bezier_1 = Bezier::from_quadratic_dvec2(cubic_end, quadratic_1_handle, quadratic_end);
let subpath = Subpath::new(
vec![
ManipulatorGroup {
anchor: cubic_start,
in_handle: None,
out_handle: Some(cubic_handle_1),
id: EmptyId,
},
ManipulatorGroup {
anchor: cubic_end,
in_handle: Some(cubic_handle_2),
out_handle: None,
id: EmptyId,
},
ManipulatorGroup {
anchor: quadratic_end,
in_handle: Some(quadratic_1_handle),
out_handle: Some(quadratic_2_handle),
id: EmptyId,
},
],
true,
);
let line = Bezier::from_linear_coordinates(150., 150., 20., 20.);
let cubic_intersections = cubic_bezier.intersections(&line, None, None);
let quadratic_1_intersections = quadratic_bezier_1.intersections(&line, None, None);
let subpath_intersections = subpath.intersections(&line, None, None);
assert!(
utils::dvec2_compare(
cubic_bezier.evaluate(TValue::Parametric(cubic_intersections[0])),
subpath.evaluate(SubpathTValue::Parametric {
segment_index: subpath_intersections[0].0,
t: subpath_intersections[0].1
}),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
assert!(
utils::dvec2_compare(
quadratic_bezier_1.evaluate(TValue::Parametric(quadratic_1_intersections[0])),
subpath.evaluate(SubpathTValue::Parametric {
segment_index: subpath_intersections[1].0,
t: subpath_intersections[1].1
}),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
assert!(
utils::dvec2_compare(
quadratic_bezier_1.evaluate(TValue::Parametric(quadratic_1_intersections[1])),
subpath.evaluate(SubpathTValue::Parametric {
segment_index: subpath_intersections[2].0,
t: subpath_intersections[2].1
}),
MAX_ABSOLUTE_DIFFERENCE
)
.all()
);
}
// TODO: add more intersection tests
#[test]
fn is_inside_subpath() {
let boundary_polygon = [DVec2::new(100., 100.), DVec2::new(500., 100.), DVec2::new(500., 500.), DVec2::new(100., 500.)].to_vec();
let boundary_polygon = Subpath::from_anchors_linear(boundary_polygon, true);
let curve = Bezier::from_quadratic_dvec2(DVec2::new(189., 289.), DVec2::new(9., 286.), DVec2::new(45., 410.));
let curve_intersecting = Subpath::<EmptyId>::from_bezier(&curve);
assert!(!curve_intersecting.is_inside_subpath(&boundary_polygon, None, None));
let curve = Bezier::from_quadratic_dvec2(DVec2::new(115., 37.), DVec2::new(51.4, 91.8), DVec2::new(76.5, 242.));
let curve_outside = Subpath::<EmptyId>::from_bezier(&curve);
assert!(!curve_outside.is_inside_subpath(&boundary_polygon, None, None));
let curve = Bezier::from_cubic_dvec2(DVec2::new(210.1, 133.5), DVec2::new(150.2, 436.9), DVec2::new(436., 285.), DVec2::new(247.6, 240.7));
let curve_inside = Subpath::<EmptyId>::from_bezier(&curve);
assert!(curve_inside.is_inside_subpath(&boundary_polygon, None, None));
let line = Bezier::from_linear_dvec2(DVec2::new(101., 101.5), DVec2::new(150.2, 499.));
let line_inside = Subpath::<EmptyId>::from_bezier(&line);
assert!(line_inside.is_inside_subpath(&boundary_polygon, None, None));
}
#[test]
fn round_join_counter_clockwise_rotation() {
// Test case where the round join is drawn in the counter clockwise direction between two consecutive offsets
let subpath = Subpath::new(
vec![
ManipulatorGroup {
anchor: DVec2::new(20., 20.),
out_handle: Some(DVec2::new(10., 90.)),
in_handle: None,
id: EmptyId,
},
ManipulatorGroup {
anchor: DVec2::new(114., 159.),
out_handle: None,
in_handle: Some(DVec2::new(60., 40.)),
id: EmptyId,
},
ManipulatorGroup {
anchor: DVec2::new(148., 155.),
out_handle: None,
in_handle: None,
id: EmptyId,
},
],
false,
);
let offset = subpath.offset(10., utils::Join::Round);
let offset_len = offset.len();
let manipulator_groups = offset.manipulator_groups();
let round_start = manipulator_groups[offset_len - 4].anchor;
let round_point = manipulator_groups[offset_len - 3].anchor;
let round_end = manipulator_groups[offset_len - 2].anchor;
let middle = (round_start + round_end) / 2.;
assert!((round_point - middle).angle_to(round_start - middle) > 0.);
assert!((round_end - middle).angle_to(round_point - middle) > 0.);
}
#[test]
fn round_join_clockwise_rotation() {
// Test case where the round join is drawn in the clockwise direction between two consecutive offsets
let subpath = Subpath::new(
vec![
ManipulatorGroup {
anchor: DVec2::new(20., 20.),
out_handle: Some(DVec2::new(10., 90.)),
in_handle: None,
id: EmptyId,
},
ManipulatorGroup {
anchor: DVec2::new(150., 40.),
out_handle: None,
in_handle: Some(DVec2::new(60., 40.)),
id: EmptyId,
},
ManipulatorGroup {
anchor: DVec2::new(78., 36.),
out_handle: None,
in_handle: None,
id: EmptyId,
},
],
false,
);
let offset = subpath.offset(-15., utils::Join::Round);
let offset_len = offset.len();
let manipulator_groups = offset.manipulator_groups();
let round_start = manipulator_groups[offset_len - 4].anchor;
let round_point = manipulator_groups[offset_len - 3].anchor;
let round_end = manipulator_groups[offset_len - 2].anchor;
let middle = (round_start + round_end) / 2.;
assert!((round_point - middle).angle_to(round_start - middle) < 0.);
assert!((round_end - middle).angle_to(round_point - middle) < 0.);
}
}
|