File size: 20,466 Bytes
2409829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
use crate::brush_cache::BrushCache;
use crate::brush_stroke::{BrushStroke, BrushStyle};
use glam::{DAffine2, DVec2};
use graphene_core::blending::BlendMode;
use graphene_core::bounds::BoundingBox;
use graphene_core::color::{Alpha, Color, Pixel, Sample};
use graphene_core::generic::FnNode;
use graphene_core::instances::Instance;
use graphene_core::math::bbox::{AxisAlignedBbox, Bbox};
use graphene_core::raster::BitmapMut;
use graphene_core::raster::image::Image;
use graphene_core::raster_types::{CPU, Raster, RasterDataTable};
use graphene_core::registry::FutureWrapperNode;
use graphene_core::transform::Transform;
use graphene_core::value::ClonedNode;
use graphene_core::{Ctx, Node};
use graphene_raster_nodes::adjustments::blend_colors;
use graphene_raster_nodes::std_nodes::{empty_image, extend_image_to_bounds};
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct BrushStampGenerator<P: Pixel + Alpha> {
color: P,
feather_exponent: f32,
transform: DAffine2,
}
impl<P: Pixel + Alpha> Transform for BrushStampGenerator<P> {
fn transform(&self) -> DAffine2 {
self.transform
}
}
impl<P: Pixel + Alpha> Sample for BrushStampGenerator<P> {
type Pixel = P;
#[inline]
fn sample(&self, position: DVec2, area: DVec2) -> Option<P> {
let position = self.transform.inverse().transform_point2(position);
let area = self.transform.inverse().transform_vector2(area);
let aa_blur_radius = area.length() as f32 * 2.;
let center = DVec2::splat(0.5);
let distance = (position + area / 2. - center).length() as f32 * 2.;
let edge_opacity = 1. - (1. - aa_blur_radius).powf(self.feather_exponent);
let result = if distance < 1. - aa_blur_radius {
1. - distance.powf(self.feather_exponent)
} else if distance < 1. {
// TODO: Replace this with a proper analytical AA implementation
edge_opacity * ((1. - distance) / aa_blur_radius)
} else {
return None;
};
use graphene_core::color::Channel;
Some(self.color.multiplied_alpha(P::AlphaChannel::from_linear(result)))
}
}
#[node_macro::node(skip_impl)]
fn brush_stamp_generator(#[unit(" px")] diameter: f64, color: Color, hardness: f64, flow: f64) -> BrushStampGenerator<Color> {
// Diameter
let radius = diameter / 2.;
// Hardness
let hardness = hardness / 100.;
let feather_exponent = 1. / (1. - hardness) as f32;
// Flow
let flow = flow / 100.;
// Color
let color = color.apply_opacity(flow as f32);
let transform = DAffine2::from_scale_angle_translation(DVec2::splat(diameter), 0., -DVec2::splat(radius));
BrushStampGenerator { color, feather_exponent, transform }
}
#[node_macro::node(skip_impl)]
fn blit<BlendFn>(mut target: RasterDataTable<CPU>, texture: Raster<CPU>, positions: Vec<DVec2>, blend_mode: BlendFn) -> RasterDataTable<CPU>
where
BlendFn: for<'any_input> Node<'any_input, (Color, Color), Output = Color>,
{
if positions.is_empty() {
return target;
}
for target_instance in target.instance_mut_iter() {
let target_width = target_instance.instance.width;
let target_height = target_instance.instance.height;
let target_size = DVec2::new(target_width as f64, target_height as f64);
let texture_size = DVec2::new(texture.width as f64, texture.height as f64);
let document_to_target = DAffine2::from_translation(-texture_size / 2.) * DAffine2::from_scale(target_size) * target_instance.transform.inverse();
for position in &positions {
let start = document_to_target.transform_point2(*position).round();
let stop = start + texture_size;
// Half-open integer ranges [start, stop).
let clamp_start = start.clamp(DVec2::ZERO, target_size).as_uvec2();
let clamp_stop = stop.clamp(DVec2::ZERO, target_size).as_uvec2();
let blit_area_offset = (clamp_start.as_dvec2() - start).as_uvec2().min(texture_size.as_uvec2());
let blit_area_dimensions = (clamp_stop - clamp_start).min(texture_size.as_uvec2() - blit_area_offset);
// Tight blitting loop. Eagerly assert bounds to hopefully eliminate bounds check inside loop.
let texture_index = |x: u32, y: u32| -> usize { (y as usize * texture.width as usize) + (x as usize) };
let target_index = |x: u32, y: u32| -> usize { (y as usize * target_width as usize) + (x as usize) };
let max_y = (blit_area_offset.y + blit_area_dimensions.y).saturating_sub(1);
let max_x = (blit_area_offset.x + blit_area_dimensions.x).saturating_sub(1);
assert!(texture_index(max_x, max_y) < texture.data.len());
assert!(target_index(max_x, max_y) < target_instance.instance.data.len());
for y in blit_area_offset.y..blit_area_offset.y + blit_area_dimensions.y {
for x in blit_area_offset.x..blit_area_offset.x + blit_area_dimensions.x {
let src_pixel = texture.data[texture_index(x, y)];
let dst_pixel = &mut target_instance.instance.data_mut().data[target_index(x + clamp_start.x, y + clamp_start.y)];
*dst_pixel = blend_mode.eval((src_pixel, *dst_pixel));
}
}
}
}
target
}
pub async fn create_brush_texture(brush_style: &BrushStyle) -> Raster<CPU> {
let stamp = brush_stamp_generator(brush_style.diameter, brush_style.color, brush_style.hardness, brush_style.flow);
let transform = DAffine2::from_scale_angle_translation(DVec2::splat(brush_style.diameter), 0., -DVec2::splat(brush_style.diameter / 2.));
let blank_texture = empty_image((), transform, Color::TRANSPARENT).instance_iter().next().unwrap_or_default();
let image = blend_stamp_closure(stamp, blank_texture, |a, b| blend_colors(a, b, BlendMode::Normal, 1.));
image.instance
}
pub fn blend_with_mode(background: Instance<Raster<CPU>>, foreground: Instance<Raster<CPU>>, blend_mode: BlendMode, opacity: f64) -> Instance<Raster<CPU>> {
let opacity = opacity / 100.;
match std::hint::black_box(blend_mode) {
// Normal group
BlendMode::Normal => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::Normal, opacity)),
// Darken group
BlendMode::Darken => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::Darken, opacity)),
BlendMode::Multiply => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::Multiply, opacity)),
BlendMode::ColorBurn => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::ColorBurn, opacity)),
BlendMode::LinearBurn => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::LinearBurn, opacity)),
BlendMode::DarkerColor => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::DarkerColor, opacity)),
// Lighten group
BlendMode::Lighten => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::Lighten, opacity)),
BlendMode::Screen => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::Screen, opacity)),
BlendMode::ColorDodge => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::ColorDodge, opacity)),
BlendMode::LinearDodge => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::LinearDodge, opacity)),
BlendMode::LighterColor => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::LighterColor, opacity)),
// Contrast group
BlendMode::Overlay => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::Overlay, opacity)),
BlendMode::SoftLight => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::SoftLight, opacity)),
BlendMode::HardLight => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::HardLight, opacity)),
BlendMode::VividLight => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::VividLight, opacity)),
BlendMode::LinearLight => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::LinearLight, opacity)),
BlendMode::PinLight => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::PinLight, opacity)),
BlendMode::HardMix => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::HardMix, opacity)),
// Inversion group
BlendMode::Difference => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::Difference, opacity)),
BlendMode::Exclusion => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::Exclusion, opacity)),
BlendMode::Subtract => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::Subtract, opacity)),
BlendMode::Divide => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::Divide, opacity)),
// Component group
BlendMode::Hue => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::Hue, opacity)),
BlendMode::Saturation => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::Saturation, opacity)),
BlendMode::Color => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::Color, opacity)),
BlendMode::Luminosity => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::Luminosity, opacity)),
// Other utility blend modes (hidden from the normal list)
BlendMode::Erase => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::Erase, opacity)),
BlendMode::Restore => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::Restore, opacity)),
BlendMode::MultiplyAlpha => blend_image_closure(foreground, background, |a, b| blend_colors(a, b, BlendMode::MultiplyAlpha, opacity)),
}
}
#[node_macro::node(category("Raster"))]
async fn brush(_: impl Ctx, mut image_frame_table: RasterDataTable<CPU>, strokes: Vec<BrushStroke>, cache: BrushCache) -> RasterDataTable<CPU> {
if image_frame_table.is_empty() {
image_frame_table.push(Instance::default());
}
// TODO: Find a way to handle more than one instance
let image_frame_instance = image_frame_table.instance_ref_iter().next().expect("Expected the one instance we just pushed").to_instance_cloned();
let [start, end] = image_frame_instance.clone().to_table().bounding_box(DAffine2::IDENTITY, false).unwrap_or([DVec2::ZERO, DVec2::ZERO]);
let image_bbox = AxisAlignedBbox { start, end };
let stroke_bbox = strokes.iter().map(|s| s.bounding_box()).reduce(|a, b| a.union(&b)).unwrap_or(AxisAlignedBbox::ZERO);
let bbox = if image_bbox.size().length() < 0.1 { stroke_bbox } else { stroke_bbox.union(&image_bbox) };
let background_bounds = bbox.to_transform();
let mut draw_strokes: Vec<_> = strokes.iter().filter(|&s| !matches!(s.style.blend_mode, BlendMode::Erase | BlendMode::Restore)).cloned().collect();
let erase_restore_strokes: Vec<_> = strokes.iter().filter(|&s| matches!(s.style.blend_mode, BlendMode::Erase | BlendMode::Restore)).cloned().collect();
let mut brush_plan = cache.compute_brush_plan(image_frame_instance, &draw_strokes);
// TODO: Find a way to handle more than one instance
let Some(mut actual_image) = extend_image_to_bounds((), brush_plan.background.to_table(), background_bounds).instance_iter().next() else {
return RasterDataTable::default();
};
let final_stroke_idx = brush_plan.strokes.len().saturating_sub(1);
for (idx, stroke) in brush_plan.strokes.into_iter().enumerate() {
// Create brush texture.
// TODO: apply rotation from layer to stamp for non-rotationally-symmetric brushes.
let mut brush_texture = cache.get_cached_brush(&stroke.style);
if brush_texture.is_none() {
let tex = create_brush_texture(&stroke.style).await;
cache.store_brush(stroke.style.clone(), tex.clone());
brush_texture = Some(tex);
}
let brush_texture = brush_texture.unwrap();
// Compute transformation from stroke texture space into layer space, and create the stroke texture.
let skip = if idx == 0 { brush_plan.first_stroke_point_skip } else { 0 };
let positions: Vec<_> = stroke.compute_blit_points().into_iter().skip(skip).collect();
let stroke_texture = if idx == 0 && positions.is_empty() {
core::mem::take(&mut brush_plan.first_stroke_texture)
} else {
let mut bbox = stroke.bounding_box();
bbox.start = bbox.start.floor();
bbox.end = bbox.end.floor();
let stroke_size = bbox.size() + DVec2::splat(stroke.style.diameter);
// For numerical stability we want to place the first blit point at a stable, integer offset in layer space.
let snap_offset = positions[0].floor() - positions[0];
let stroke_origin_in_layer = bbox.start - snap_offset - DVec2::splat(stroke.style.diameter / 2.);
let stroke_to_layer = DAffine2::from_translation(stroke_origin_in_layer) * DAffine2::from_scale(stroke_size);
// let normal_blend = BlendColorPairNode::new(ValueNode::new(CopiedNode::new(BlendMode::Normal)), ValueNode::new(CopiedNode::new(100.)));
let normal_blend = FnNode::new(|(a, b)| blend_colors(a, b, BlendMode::Normal, 1.));
let blit_node = BlitNode::new(
FutureWrapperNode::new(ClonedNode::new(brush_texture)),
FutureWrapperNode::new(ClonedNode::new(positions)),
FutureWrapperNode::new(ClonedNode::new(normal_blend)),
);
let blit_target = if idx == 0 {
let target = core::mem::take(&mut brush_plan.first_stroke_texture);
extend_image_to_bounds((), target.to_table(), stroke_to_layer)
} else {
empty_image((), stroke_to_layer, Color::TRANSPARENT)
// EmptyImageNode::new(CopiedNode::new(stroke_to_layer), CopiedNode::new(Color::TRANSPARENT)).eval(())
};
let instances = blit_node.eval(blit_target).await;
assert_eq!(instances.len(), 1);
instances.instance_iter().next().unwrap_or_default()
};
// Cache image before doing final blend, and store final stroke texture.
if idx == final_stroke_idx {
cache.cache_results(core::mem::take(&mut draw_strokes), actual_image.clone(), stroke_texture.clone());
}
// TODO: Is this the correct way to do opacity in blending?
actual_image = blend_with_mode(actual_image, stroke_texture, stroke.style.blend_mode, (stroke.style.color.a() * 100.) as f64);
}
let has_erase_strokes = strokes.iter().any(|s| s.style.blend_mode == BlendMode::Erase);
if has_erase_strokes {
let opaque_image = Image::new(bbox.size().x as u32, bbox.size().y as u32, Color::WHITE);
let mut erase_restore_mask = Instance {
instance: Raster::new_cpu(opaque_image),
transform: background_bounds,
..Default::default()
};
for stroke in erase_restore_strokes {
let mut brush_texture = cache.get_cached_brush(&stroke.style);
if brush_texture.is_none() {
let tex = create_brush_texture(&stroke.style).await;
cache.store_brush(stroke.style.clone(), tex.clone());
brush_texture = Some(tex);
}
let brush_texture = brush_texture.unwrap();
let positions: Vec<_> = stroke.compute_blit_points().into_iter().collect();
match stroke.style.blend_mode {
BlendMode::Erase => {
let blend_params = FnNode::new(|(a, b)| blend_colors(a, b, BlendMode::Erase, 1.));
let blit_node = BlitNode::new(
FutureWrapperNode::new(ClonedNode::new(brush_texture)),
FutureWrapperNode::new(ClonedNode::new(positions)),
FutureWrapperNode::new(ClonedNode::new(blend_params)),
);
erase_restore_mask = blit_node.eval(erase_restore_mask.to_table()).await.instance_iter().next().unwrap_or_default();
}
// Yes, this is essentially the same as the above, but we duplicate to inline the blend mode.
BlendMode::Restore => {
let blend_params = FnNode::new(|(a, b)| blend_colors(a, b, BlendMode::Restore, 1.));
let blit_node = BlitNode::new(
FutureWrapperNode::new(ClonedNode::new(brush_texture)),
FutureWrapperNode::new(ClonedNode::new(positions)),
FutureWrapperNode::new(ClonedNode::new(blend_params)),
);
erase_restore_mask = blit_node.eval(erase_restore_mask.to_table()).await.instance_iter().next().unwrap_or_default();
}
_ => unreachable!(),
}
}
let blend_params = FnNode::new(|(a, b)| blend_colors(a, b, BlendMode::MultiplyAlpha, 1.));
actual_image = blend_image_closure(erase_restore_mask, actual_image, |a, b| blend_params.eval((a, b)));
}
let first_row = image_frame_table.instance_mut_iter().next().unwrap();
*first_row.instance = actual_image.instance;
*first_row.transform = actual_image.transform;
*first_row.alpha_blending = actual_image.alpha_blending;
*first_row.source_node_id = actual_image.source_node_id;
image_frame_table
}
pub fn blend_image_closure(foreground: Instance<Raster<CPU>>, mut background: Instance<Raster<CPU>>, map_fn: impl Fn(Color, Color) -> Color) -> Instance<Raster<CPU>> {
let foreground_size = DVec2::new(foreground.instance.width as f64, foreground.instance.height as f64);
let background_size = DVec2::new(background.instance.width as f64, background.instance.height as f64);
// Transforms a point from the background image to the foreground image
let background_to_foreground = DAffine2::from_scale(foreground_size) * foreground.transform.inverse() * background.transform * DAffine2::from_scale(1. / background_size);
// Footprint of the foreground image (0, 0)..(1, 1) in the background image space
let background_aabb = Bbox::unit().affine_transform(background.transform.inverse() * foreground.transform).to_axis_aligned_bbox();
// Clamp the foreground image to the background image
let start = (background_aabb.start * background_size).max(DVec2::ZERO).as_uvec2();
let end = (background_aabb.end * background_size).min(background_size).as_uvec2();
for y in start.y..end.y {
for x in start.x..end.x {
let background_point = DVec2::new(x as f64, y as f64);
let foreground_point = background_to_foreground.transform_point2(background_point);
let source_pixel = foreground.instance.sample(foreground_point);
let Some(destination_pixel) = background.instance.data_mut().get_pixel_mut(x, y) else { continue };
*destination_pixel = map_fn(source_pixel, *destination_pixel);
}
}
background
}
pub fn blend_stamp_closure(foreground: BrushStampGenerator<Color>, mut background: Instance<Raster<CPU>>, map_fn: impl Fn(Color, Color) -> Color) -> Instance<Raster<CPU>> {
let background_size = DVec2::new(background.instance.width as f64, background.instance.height as f64);
// Transforms a point from the background image to the foreground image
let background_to_foreground = background.transform * DAffine2::from_scale(1. / background_size);
// Footprint of the foreground image (0, 0)..(1, 1) in the background image space
let background_aabb = Bbox::unit().affine_transform(background.transform.inverse() * foreground.transform).to_axis_aligned_bbox();
// Clamp the foreground image to the background image
let start = (background_aabb.start * background_size).max(DVec2::ZERO).as_uvec2();
let end = (background_aabb.end * background_size).min(background_size).as_uvec2();
let area = background_to_foreground.transform_point2(DVec2::new(1., 1.)) - background_to_foreground.transform_point2(DVec2::ZERO);
for y in start.y..end.y {
for x in start.x..end.x {
let background_point = DVec2::new(x as f64, y as f64);
let foreground_point = background_to_foreground.transform_point2(background_point);
let Some(source_pixel) = foreground.sample(foreground_point, area) else { continue };
let Some(destination_pixel) = background.instance.data_mut().get_pixel_mut(x, y) else { continue };
*destination_pixel = map_fn(source_pixel, *destination_pixel);
}
}
background
}
#[cfg(test)]
mod test {
use super::*;
use glam::DAffine2;
use graphene_core::transform::Transform;
#[test]
fn test_brush_texture() {
let size = 20.;
let image = brush_stamp_generator(size, Color::BLACK, 100., 100.);
assert_eq!(image.transform(), DAffine2::from_scale_angle_translation(DVec2::splat(size.ceil()), 0., -DVec2::splat(size / 2.)));
// center pixel should be BLACK
assert_eq!(image.sample(DVec2::splat(0.), DVec2::ONE), Some(Color::BLACK));
}
#[tokio::test]
async fn test_brush_output_size() {
let image = brush(
(),
RasterDataTable::<CPU>::new(Raster::new_cpu(Image::<Color>::default())),
vec![BrushStroke {
trace: vec![crate::brush_stroke::BrushInputSample { position: DVec2::ZERO }],
style: BrushStyle {
color: Color::BLACK,
diameter: 20.,
hardness: 20.,
flow: 20.,
spacing: 20.,
blend_mode: BlendMode::Normal,
},
}],
BrushCache::new_proto(),
)
.await;
assert_eq!(image.instance_ref_iter().next().unwrap().instance.width, 20);
}
}
|