File size: 6,745 Bytes
2409829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
use crate::Color;
use dyn_any::DynAny;
use glam::{DAffine2, DVec2};
#[derive(Default, PartialEq, Eq, Clone, Copy, Debug, Hash, serde::Serialize, serde::Deserialize, DynAny, specta::Type, node_macro::ChoiceType)]
#[widget(Radio)]
pub enum GradientType {
#[default]
Linear,
Radial,
}
// TODO: Someday we could switch this to a Box[T] to avoid over-allocation
// TODO: Use linear not gamma colors
/// A list of colors associated with positions (in the range 0 to 1) along a gradient.
#[derive(Debug, Clone, PartialEq, serde::Serialize, serde::Deserialize, DynAny, specta::Type)]
pub struct GradientStops(pub Vec<(f64, Color)>);
impl std::hash::Hash for GradientStops {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.0.len().hash(state);
self.0.iter().for_each(|(position, color)| {
position.to_bits().hash(state);
color.hash(state);
});
}
}
impl Default for GradientStops {
fn default() -> Self {
Self(vec![(0., Color::BLACK), (1., Color::WHITE)])
}
}
impl IntoIterator for GradientStops {
type Item = (f64, Color);
type IntoIter = std::vec::IntoIter<(f64, Color)>;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
impl<'a> IntoIterator for &'a GradientStops {
type Item = &'a (f64, Color);
type IntoIter = std::slice::Iter<'a, (f64, Color)>;
fn into_iter(self) -> Self::IntoIter {
self.0.iter()
}
}
impl std::ops::Index<usize> for GradientStops {
type Output = (f64, Color);
fn index(&self, index: usize) -> &Self::Output {
&self.0[index]
}
}
impl std::ops::Deref for GradientStops {
type Target = Vec<(f64, Color)>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl std::ops::DerefMut for GradientStops {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl GradientStops {
pub fn new(stops: Vec<(f64, Color)>) -> Self {
let mut stops = Self(stops);
stops.sort();
stops
}
pub fn evaluate(&self, t: f64) -> Color {
if self.0.is_empty() {
return Color::BLACK;
}
if t <= self.0[0].0 {
return self.0[0].1;
}
if t >= self.0[self.0.len() - 1].0 {
return self.0[self.0.len() - 1].1;
}
for i in 0..self.0.len() - 1 {
let (t1, c1) = self.0[i];
let (t2, c2) = self.0[i + 1];
if t >= t1 && t <= t2 {
let normalized_t = (t - t1) / (t2 - t1);
return c1.lerp(&c2, normalized_t as f32);
}
}
Color::BLACK
}
pub fn sort(&mut self) {
self.0.sort_unstable_by(|a, b| a.0.partial_cmp(&b.0).unwrap());
}
pub fn reversed(&self) -> Self {
Self(self.0.iter().rev().map(|(position, color)| (1. - position, *color)).collect())
}
pub fn map_colors<F: Fn(&Color) -> Color>(&self, f: F) -> Self {
Self(self.0.iter().map(|(position, color)| (*position, f(color))).collect())
}
}
/// A gradient fill.
///
/// Contains the start and end points, along with the colors at varying points along the length.
#[repr(C)]
#[derive(Debug, Clone, PartialEq, serde::Serialize, serde::Deserialize, DynAny, specta::Type)]
pub struct Gradient {
pub stops: GradientStops,
pub gradient_type: GradientType,
pub start: DVec2,
pub end: DVec2,
pub transform: DAffine2,
}
impl Default for Gradient {
fn default() -> Self {
Self {
stops: GradientStops::default(),
gradient_type: GradientType::Linear,
start: DVec2::new(0., 0.5),
end: DVec2::new(1., 0.5),
transform: DAffine2::IDENTITY,
}
}
}
impl std::hash::Hash for Gradient {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.stops.0.len().hash(state);
[].iter()
.chain(self.start.to_array().iter())
.chain(self.end.to_array().iter())
.chain(self.transform.to_cols_array().iter())
.chain(self.stops.0.iter().map(|(position, _)| position))
.for_each(|x| x.to_bits().hash(state));
self.stops.0.iter().for_each(|(_, color)| color.hash(state));
self.gradient_type.hash(state);
}
}
impl std::fmt::Display for Gradient {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let round = |x: f64| (x * 1e3).round() / 1e3;
let stops = self
.stops
.0
.iter()
.map(|(position, color)| format!("[{}%: #{}]", round(position * 100.), color.to_rgba_hex_srgb()))
.collect::<Vec<_>>()
.join(", ");
write!(f, "{} Gradient: {stops}", self.gradient_type)
}
}
impl Gradient {
/// Constructs a new gradient with the colors at 0 and 1 specified.
pub fn new(start: DVec2, start_color: Color, end: DVec2, end_color: Color, transform: DAffine2, gradient_type: GradientType) -> Self {
Gradient {
start,
end,
stops: GradientStops::new(vec![(0., start_color.to_gamma_srgb()), (1., end_color.to_gamma_srgb())]),
transform,
gradient_type,
}
}
pub fn lerp(&self, other: &Self, time: f64) -> Self {
let start = self.start + (other.start - self.start) * time;
let end = self.end + (other.end - self.end) * time;
let transform = self.transform;
let stops = self
.stops
.0
.iter()
.zip(other.stops.0.iter())
.map(|((a_pos, a_color), (b_pos, b_color))| {
let position = a_pos + (b_pos - a_pos) * time;
let color = a_color.lerp(b_color, time as f32);
(position, color)
})
.collect::<Vec<_>>();
let stops = GradientStops::new(stops);
let gradient_type = if time < 0.5 { self.gradient_type } else { other.gradient_type };
Self {
start,
end,
transform,
stops,
gradient_type,
}
}
/// Insert a stop into the gradient, the index if successful
pub fn insert_stop(&mut self, mouse: DVec2, transform: DAffine2) -> Option<usize> {
// Transform the start and end positions to the same coordinate space as the mouse.
let (start, end) = (transform.transform_point2(self.start), transform.transform_point2(self.end));
// Calculate the new position by finding the closest point on the line
let new_position = ((end - start).angle_to(mouse - start)).cos() * start.distance(mouse) / start.distance(end);
// Don't insert point past end of line
if !(0. ..=1.).contains(&new_position) {
return None;
}
// Compute the color of the inserted stop
let get_color = |index: usize, time: f64| match (self.stops.0[index].1, self.stops.0.get(index + 1).map(|(_, c)| *c)) {
// Lerp between the nearest colors if applicable
(a, Some(b)) => a.lerp(
&b,
((time - self.stops.0[index].0) / self.stops.0.get(index + 1).map(|end| end.0 - self.stops.0[index].0).unwrap_or_default()) as f32,
),
// Use the start or the end color if applicable
(v, _) => v,
};
// Compute the correct index to keep the positions in order
let mut index = 0;
while self.stops.0.len() > index && self.stops.0[index].0 <= new_position {
index += 1;
}
let new_color = get_color(index - 1, new_position);
// Insert the new stop
self.stops.0.insert(index, (new_position, new_color));
Some(index)
}
}
|