File size: 7,344 Bytes
2409829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
use glam::{DAffine2, DVec2};
#[derive(Debug, Clone, Default, Copy)]
/// A quad defined by four vertices. Clockwise from the top left:
///
/// `top_left`, `top_right`, `bottom_right`, `bottom_left`.
pub struct Quad(pub [DVec2; 4]);
impl Quad {
/// Get the top left corner of the quad.
pub fn top_left(&self) -> DVec2 {
self.0[0]
}
/// Get the top right corner of the quad.
pub fn top_right(&self) -> DVec2 {
self.0[1]
}
/// Get the bottom right corner of the quad.
pub fn bottom_right(&self) -> DVec2 {
self.0[2]
}
/// Get the bottom left corner of the quad.
pub fn bottom_left(&self) -> DVec2 {
self.0[3]
}
/// Create a zero-sized quad at the point.
pub fn from_point(point: DVec2) -> Self {
Self([point; 4])
}
/// Convert a box defined by two corner points to a quad. The points must be given as `minimum (top left)` then `maximum (bottom right)`.
pub fn from_box(bbox: [DVec2; 2]) -> Self {
let size = bbox[1] - bbox[0];
Self([bbox[0], bbox[0] + size * DVec2::X, bbox[1], bbox[0] + size * DVec2::Y])
}
/// Create a quad from the center and offset (distance from center to middle of an edge)
pub fn from_square(center: DVec2, offset: f64) -> Self {
Self::from_box([center - offset, center + offset])
}
/// Get all the edges in the quad.
pub fn all_edges(&self) -> [[DVec2; 2]; 4] {
[[self.0[0], self.0[1]], [self.0[1], self.0[2]], [self.0[2], self.0[3]], [self.0[3], self.0[0]]]
}
/// Get two edges as bases.
pub fn edges(&self) -> [[DVec2; 2]; 2] {
[[self.0[0], self.0[1]], [self.0[1], self.0[2]]]
}
/// Returns true only if the width and height are both greater than or equal to the given width.
pub fn all_sides_at_least_width(&self, width: f64) -> bool {
self.edges().into_iter().all(|[a, b]| (a - b).length_squared() >= width.powi(2))
}
/// Generates the axis aligned bounding box of the quad
pub fn bounding_box(&self) -> [DVec2; 2] {
[
self.0.into_iter().reduce(|a, b| a.min(b)).unwrap_or_default(),
self.0.into_iter().reduce(|a, b| a.max(b)).unwrap_or_default(),
]
}
/// Gets the center of a quad
pub fn center(&self) -> DVec2 {
self.0.iter().sum::<DVec2>() / 4.
}
/// Take the outside bounds of two axis aligned rectangles, which are defined by two corner points.
pub fn combine_bounds(a: [DVec2; 2], b: [DVec2; 2]) -> [DVec2; 2] {
[a[0].min(b[0]), a[1].max(b[1])]
}
/// "Clip" bounds of `a` to the limits of `b`.
pub fn clip(a: [DVec2; 2], b: [DVec2; 2]) -> [DVec2; 2] {
[
a[0].max(b[0]), // Constrain min corner
a[1].min(b[1]), // Constrain max corner
]
}
/// Expand a quad by a certain amount on all sides.
///
/// Not currently very optimized
pub fn inflate(&self, offset: f64) -> Quad {
let offset = |index_before, index, index_after| {
let [point_before, point, point_after]: [DVec2; 3] = [self.0[index_before], self.0[index], self.0[index_after]];
let [line_in, line_out] = [point - point_before, point_after - point];
let angle = line_in.angle_to(-line_out);
let offset_length = offset / (std::f64::consts::FRAC_PI_2 - angle / 2.).cos();
point + (line_in.perp().normalize_or_zero() + line_out.perp().normalize_or_zero()).normalize_or_zero() * offset_length
};
Self([offset(3, 0, 1), offset(0, 1, 2), offset(1, 2, 3), offset(2, 3, 0)])
}
/// Does this quad contain a point
///
/// Code from https://wrfranklin.org/Research/Short_Notes/pnpoly.html
pub fn contains(&self, p: DVec2) -> bool {
let mut inside = false;
for (i, j) in (0..4).zip([3, 0, 1, 2]) {
if (self.0[i].y > p.y) != (self.0[j].y > p.y) && p.x < ((self.0[j].x - self.0[i].x) * (p.y - self.0[i].y) / (self.0[j].y - self.0[i].y) + self.0[i].x) {
inside = !inside;
}
}
inside
}
/// https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/F23/lectures/02_line_segment_intersections.pdf
fn line_intersection_t(a: DVec2, b: DVec2, c: DVec2, d: DVec2) -> (f64, f64) {
let t = ((a.x - c.x) * (c.y - d.y) - (a.y - c.y) * (c.x - d.x)) / ((a.x - b.x) * (c.y - d.y) - (a.y - b.y) * (c.x - d.x));
let u = ((a.x - c.x) * (a.y - b.y) - (a.y - c.y) * (a.x - b.x)) / ((a.x - b.x) * (c.y - d.y) - (a.y - b.y) * (c.x - d.x));
(t, u)
}
fn intersect_lines(a: DVec2, b: DVec2, c: DVec2, d: DVec2) -> Option<DVec2> {
let (t, u) = Self::line_intersection_t(a, b, c, d);
((0. ..=1.).contains(&t) && (0. ..=1.).contains(&u)).then(|| a + t * (b - a))
}
pub fn intersect_rays(a: DVec2, a_direction: DVec2, b: DVec2, b_direction: DVec2) -> Option<DVec2> {
let (t, u) = Self::line_intersection_t(a, a + a_direction, b, b + b_direction);
(t.is_finite() && u.is_finite()).then(|| a + t * a_direction)
}
pub fn intersects(&self, other: Quad) -> bool {
let intersects = self
.all_edges()
.into_iter()
.any(|[a, b]| other.all_edges().into_iter().any(|[c, d]| Self::intersect_lines(a, b, c, d).is_some()));
self.contains(other.center()) || other.contains(self.center()) || intersects
}
}
impl std::ops::Mul<Quad> for DAffine2 {
type Output = Quad;
fn mul(self, rhs: Quad) -> Self::Output {
Quad(rhs.0.map(|point| self.transform_point2(point)))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn offset_quad() {
fn eq(a: Quad, b: Quad) -> bool {
a.0.iter().zip(b.0).all(|(a, b)| a.abs_diff_eq(b, 0.0001))
}
assert!(eq(Quad::from_box([DVec2::ZERO, DVec2::ONE]).inflate(0.5), Quad::from_box([DVec2::splat(-0.5), DVec2::splat(1.5)])));
assert!(eq(Quad::from_box([DVec2::ONE, DVec2::ZERO]).inflate(0.5), Quad::from_box([DVec2::splat(1.5), DVec2::splat(-0.5)])));
assert!(eq(
(DAffine2::from_scale(DVec2::new(-1., 1.)) * Quad::from_box([DVec2::ZERO, DVec2::ONE])).inflate(0.5),
DAffine2::from_scale(DVec2::new(-1., 1.)) * Quad::from_box([DVec2::splat(-0.5), DVec2::splat(1.5)])
));
}
#[test]
fn quad_contains() {
assert!(Quad::from_box([DVec2::ZERO, DVec2::ONE]).contains(DVec2::splat(0.5)));
assert!(Quad::from_box([DVec2::ONE, DVec2::ZERO]).contains(DVec2::splat(0.5)));
assert!(Quad::from_box([DVec2::splat(300.), DVec2::splat(500.)]).contains(DVec2::splat(350.)));
assert!((DAffine2::from_scale(DVec2::new(-1., 1.)) * Quad::from_box([DVec2::ZERO, DVec2::ONE])).contains(DVec2::new(-0.5, 0.5)));
assert!(!Quad::from_box([DVec2::ZERO, DVec2::ONE]).contains(DVec2::new(1., 1.1)));
assert!(!Quad::from_box([DVec2::ONE, DVec2::ZERO]).contains(DVec2::new(0.5, -0.01)));
assert!(!(DAffine2::from_scale(DVec2::new(-1., 1.)) * Quad::from_box([DVec2::ZERO, DVec2::ONE])).contains(DVec2::splat(0.5)));
}
#[test]
fn intersect_lines() {
assert_eq!(
Quad::intersect_lines(DVec2::new(-5., 5.), DVec2::new(5., 5.), DVec2::new(2., 7.), DVec2::new(2., 3.)),
Some(DVec2::new(2., 5.))
);
assert_eq!(Quad::intersect_lines(DVec2::new(4., 6.), DVec2::new(4., 5.), DVec2::new(2., 7.), DVec2::new(2., 3.)), None);
assert_eq!(Quad::intersect_lines(DVec2::new(-5., 5.), DVec2::new(5., 5.), DVec2::new(2., 7.), DVec2::new(2., 9.)), None);
}
#[test]
fn intersect_quad() {
assert!(Quad::from_box([DVec2::ZERO, DVec2::splat(5.)]).intersects(Quad::from_box([DVec2::splat(4.), DVec2::splat(7.)])));
assert!(Quad::from_box([DVec2::ZERO, DVec2::splat(5.)]).intersects(Quad::from_box([DVec2::splat(4.), DVec2::splat(4.2)])));
assert!(!Quad::from_box([DVec2::ZERO, DVec2::splat(3.)]).intersects(Quad::from_box([DVec2::splat(4.), DVec2::splat(4.2)])));
}
}
|