File size: 6,256 Bytes
2409829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
use crate::{Node, WasmNotSend};
use dyn_any::DynFuture;
use std::future::Future;
use std::hash::DefaultHasher;
use std::ops::Deref;
use std::sync::Arc;
use std::sync::Mutex;

/// Caches the output of a given Node and acts as a proxy
#[derive(Default)]
pub struct MemoNode<T, CachedNode> {
	cache: Arc<Mutex<Option<(u64, T)>>>,
	node: CachedNode,
}
impl<'i, I: Hash + 'i, T: 'i + Clone + WasmNotSend, CachedNode: 'i> Node<'i, I> for MemoNode<T, CachedNode>
where
	CachedNode: for<'any_input> Node<'any_input, I>,
	for<'a> <CachedNode as Node<'a, I>>::Output: Future<Output = T> + WasmNotSend,
{
	// TODO: This should return a reference to the cached cached_value
	// but that requires a lot of lifetime magic <- This was suggested by copilot but is pretty accurate xD
	type Output = DynFuture<'i, T>;
	fn eval(&'i self, input: I) -> Self::Output {
		let mut hasher = DefaultHasher::new();
		input.hash(&mut hasher);
		let hash = hasher.finish();

		if let Some(data) = self.cache.lock().as_ref().unwrap().as_ref().and_then(|data| (data.0 == hash).then_some(data.1.clone())) {
			Box::pin(async move { data })
		} else {
			let fut = self.node.eval(input);
			let cache = self.cache.clone();
			Box::pin(async move {
				let value = fut.await;
				*cache.lock().unwrap() = Some((hash, value.clone()));
				value
			})
		}
	}

	fn reset(&self) {
		self.cache.lock().unwrap().take();
	}
}

impl<T, CachedNode> MemoNode<T, CachedNode> {
	pub fn new(node: CachedNode) -> MemoNode<T, CachedNode> {
		MemoNode { cache: Default::default(), node }
	}
}

/// Caches the output of a given Node and acts as a proxy.
/// In contrast to the regular `MemoNode`. This node ignores all input.
/// Using this node might result in the document not updating properly,
/// use with caution.
#[derive(Default)]
pub struct ImpureMemoNode<I, T, CachedNode> {
	cache: Arc<Mutex<Option<T>>>,
	node: CachedNode,
	_phantom: std::marker::PhantomData<I>,
}

impl<'i, I: 'i, T: 'i + Clone + WasmNotSend, CachedNode: 'i> Node<'i, I> for ImpureMemoNode<I, T, CachedNode>
where
	CachedNode: for<'any_input> Node<'any_input, I>,
	for<'a> <CachedNode as Node<'a, I>>::Output: Future<Output = T> + WasmNotSend,
{
	// TODO: This should return a reference to the cached cached_value
	// but that requires a lot of lifetime magic <- This was suggested by copilot but is pretty accurate xD
	type Output = DynFuture<'i, T>;
	fn eval(&'i self, input: I) -> Self::Output {
		if let Some(cached_value) = self.cache.lock().as_ref().unwrap().deref() {
			let data = cached_value.clone();
			Box::pin(async move { data })
		} else {
			let fut = self.node.eval(input);
			let cache = self.cache.clone();
			Box::pin(async move {
				let value = fut.await;
				*cache.lock().unwrap() = Some(value.clone());
				value
			})
		}
	}

	fn reset(&self) {
		self.cache.lock().unwrap().take();
	}
}

impl<T, I, CachedNode> ImpureMemoNode<I, T, CachedNode> {
	pub fn new(node: CachedNode) -> ImpureMemoNode<I, T, CachedNode> {
		ImpureMemoNode {
			cache: Default::default(),
			node,
			_phantom: std::marker::PhantomData,
		}
	}
}

/// Stores both what a node was called with and what it returned.
#[derive(Clone, Debug)]
pub struct IORecord<I, O> {
	pub input: I,
	pub output: O,
}

/// Caches the output of the last graph evaluation for introspection
#[derive(Default)]
pub struct MonitorNode<I, T, N> {
	#[allow(clippy::type_complexity)]
	io: Arc<Mutex<Option<Arc<IORecord<I, T>>>>>,
	node: N,
}

impl<'i, T, I, N> Node<'i, I> for MonitorNode<I, T, N>
where
	I: Clone + 'static + Send + Sync,
	T: Clone + 'static + Send + Sync,
	for<'a> N: Node<'a, I, Output: Future<Output = T> + WasmNotSend> + 'i,
{
	type Output = DynFuture<'i, T>;
	fn eval(&'i self, input: I) -> Self::Output {
		let io = self.io.clone();
		let output_fut = self.node.eval(input.clone());
		Box::pin(async move {
			let output = output_fut.await;
			*io.lock().unwrap() = Some(Arc::new(IORecord { input, output: output.clone() }));
			output
		})
	}

	fn serialize(&self) -> Option<Arc<dyn std::any::Any + Send + Sync>> {
		let io = self.io.lock().unwrap();
		(io).as_ref().map(|output| output.clone() as Arc<dyn std::any::Any + Send + Sync>)
	}
}

impl<I, T, N> MonitorNode<I, T, N> {
	pub fn new(node: N) -> MonitorNode<I, T, N> {
		MonitorNode { io: Arc::new(Mutex::new(None)), node }
	}
}

use std::hash::{Hash, Hasher};
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub struct MemoHash<T: Hash> {
	hash: u64,
	value: T,
}

impl<'de, T: serde::Deserialize<'de> + Hash> serde::Deserialize<'de> for MemoHash<T> {
	fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
	where
		D: serde::Deserializer<'de>,
	{
		T::deserialize(deserializer).map(|value| Self::new(value))
	}
}

impl<T: Hash + serde::Serialize> serde::Serialize for MemoHash<T> {
	fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
	where
		S: serde::Serializer,
	{
		self.value.serialize(serializer)
	}
}

impl<T: Hash> MemoHash<T> {
	pub fn new(value: T) -> Self {
		let hash = Self::calc_hash(&value);
		Self { hash, value }
	}
	pub fn new_with_hash(value: T, hash: u64) -> Self {
		Self { hash, value }
	}

	fn calc_hash(data: &T) -> u64 {
		let mut hasher = DefaultHasher::new();
		data.hash(&mut hasher);
		hasher.finish()
	}

	pub fn inner_mut(&mut self) -> MemoHashGuard<'_, T> {
		MemoHashGuard { inner: self }
	}
	pub fn into_inner(self) -> T {
		self.value
	}
	pub fn hash_code(&self) -> u64 {
		self.hash
	}
}
impl<T: Hash> From<T> for MemoHash<T> {
	fn from(value: T) -> Self {
		Self::new(value)
	}
}

impl<T: Hash> Hash for MemoHash<T> {
	fn hash<H: Hasher>(&self, state: &mut H) {
		self.hash.hash(state)
	}
}

impl<T: Hash> Deref for MemoHash<T> {
	type Target = T;

	fn deref(&self) -> &Self::Target {
		&self.value
	}
}

pub struct MemoHashGuard<'a, T: Hash> {
	inner: &'a mut MemoHash<T>,
}

impl<T: Hash> Drop for MemoHashGuard<'_, T> {
	fn drop(&mut self) {
		let hash = MemoHash::<T>::calc_hash(&self.inner.value);
		self.inner.hash = hash;
	}
}

impl<T: Hash> Deref for MemoHashGuard<'_, T> {
	type Target = T;

	fn deref(&self) -> &Self::Target {
		&self.inner.value
	}
}

impl<T: Hash> std::ops::DerefMut for MemoHashGuard<'_, T> {
	fn deref_mut(&mut self) -> &mut Self::Target {
		&mut self.inner.value
	}
}