File size: 23,285 Bytes
2409829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
use glam::DVec2;
use graphene_core::gradient::GradientStops;
use graphene_core::registry::types::{Fraction, Percentage, TextArea};
use graphene_core::{Color, Ctx, num_traits};
use log::warn;
use math_parser::ast;
use math_parser::context::{EvalContext, NothingMap, ValueProvider};
use math_parser::value::{Number, Value};
use num_traits::Pow;
use rand::{Rng, SeedableRng};
use std::ops::{Add, Div, Mul, Rem, Sub};

/// The struct that stores the context for the maths parser.
/// This is currently just limited to supplying `a` and `b` until we add better node graph support and UI for variadic inputs.
struct MathNodeContext {
	a: f64,
	b: f64,
}

impl ValueProvider for MathNodeContext {
	fn get_value(&self, name: &str) -> Option<Value> {
		if name.eq_ignore_ascii_case("a") {
			Some(Value::from_f64(self.a))
		} else if name.eq_ignore_ascii_case("b") {
			Some(Value::from_f64(self.b))
		} else {
			None
		}
	}
}

/// Calculates a mathematical expression with input values "A" and "B"
#[node_macro::node(category("Math: Arithmetic"), properties("math_properties"))]
fn math<U: num_traits::float::Float>(
	_: impl Ctx,
	/// The value of "A" when calculating the expression
	#[implementations(f64, f32)]
	operand_a: U,
	/// A math expression that may incorporate "A" and/or "B", such as "sqrt(A + B) - B^2"
	#[default(A + B)]
	expression: String,
	/// The value of "B" when calculating the expression
	#[implementations(f64, f32)]
	#[default(1.)]
	operand_b: U,
) -> U {
	let (node, _unit) = match ast::Node::try_parse_from_str(&expression) {
		Ok(expr) => expr,
		Err(e) => {
			warn!("Invalid expression: `{expression}`\n{e:?}");
			return U::from(0.).unwrap();
		}
	};
	let context = EvalContext::new(
		MathNodeContext {
			a: operand_a.to_f64().unwrap(),
			b: operand_b.to_f64().unwrap(),
		},
		NothingMap,
	);

	let value = match node.eval(&context) {
		Ok(value) => value,
		Err(e) => {
			warn!("Expression evaluation error: {e:?}");
			return U::from(0.).unwrap();
		}
	};

	let Value::Number(num) = value;
	match num {
		Number::Real(val) => U::from(val).unwrap(),
		Number::Complex(c) => U::from(c.re).unwrap(),
	}
}

/// The addition operation (+) calculates the sum of two numbers.
#[node_macro::node(category("Math: Arithmetic"))]
fn add<U: Add<T>, T>(
	_: impl Ctx,
	/// The left-hand side of the addition operation.
	#[implementations(f64, f32, u32, DVec2, f64, DVec2)]
	augend: U,
	/// The right-hand side of the addition operation.
	#[implementations(f64, f32, u32, DVec2, DVec2, f64)]
	addend: T,
) -> <U as Add<T>>::Output {
	augend + addend
}

/// The subtraction operation (-) calculates the difference between two numbers.
#[node_macro::node(category("Math: Arithmetic"))]
fn subtract<U: Sub<T>, T>(
	_: impl Ctx,
	/// The left-hand side of the subtraction operation.
	#[implementations(f64, f32, u32, DVec2, f64, DVec2)]
	minuend: U,
	/// The right-hand side of the subtraction operation.
	#[implementations(f64, f32, u32, DVec2, DVec2, f64)]
	subtrahend: T,
) -> <U as Sub<T>>::Output {
	minuend - subtrahend
}

/// The multiplication operation (×) calculates the product of two numbers.
#[node_macro::node(category("Math: Arithmetic"))]
fn multiply<U: Mul<T>, T>(
	_: impl Ctx,
	/// The left-hand side of the multiplication operation.
	#[implementations(f64, f32, u32, DVec2, f64, DVec2)]
	multiplier: U,
	/// The right-hand side of the multiplication operation.
	#[default(1.)]
	#[implementations(f64, f32, u32, DVec2, DVec2, f64)]
	multiplicand: T,
) -> <U as Mul<T>>::Output {
	multiplier * multiplicand
}

/// The division operation (÷) calculates the quotient of two numbers.
///
/// Produces 0 if the denominator is 0.
#[node_macro::node(category("Math: Arithmetic"))]
fn divide<U: Div<T> + Default + PartialEq, T: Default + PartialEq>(
	_: impl Ctx,
	/// The left-hand side of the division operation.
	#[implementations(f64, f64, f32, f32, u32, u32, DVec2, DVec2, f64)]
	numerator: U,
	/// The right-hand side of the division operation.
	#[default(1.)]
	#[implementations(f64, f64, f32, f32, u32, u32, DVec2, f64, DVec2)]
	denominator: T,
) -> <U as Div<T>>::Output
where
	<U as Div<T>>::Output: Default,
{
	if denominator == T::default() {
		return <U as Div<T>>::Output::default();
	}
	numerator / denominator
}

/// The modulo operation (%) calculates the remainder from the division of two numbers. The sign of the result shares the sign of the numerator unless "Always Positive" is enabled.
#[node_macro::node(category("Math: Arithmetic"))]
fn modulo<U: Rem<T, Output: Add<T, Output: Rem<T, Output = U::Output>>>, T: Copy>(
	_: impl Ctx,
	/// The left-hand side of the modulo operation.
	#[implementations(f64, f32, u32, DVec2, DVec2, f64)]
	numerator: U,
	/// The right-hand side of the modulo operation.
	#[default(2.)]
	#[implementations(f64, f32, u32, DVec2, f64, DVec2)]
	modulus: T,
	/// Ensures the result will always be positive, even if the numerator is negative.
	#[default(true)]
	always_positive: bool,
) -> <U as Rem<T>>::Output {
	if always_positive { (numerator % modulus + modulus) % modulus } else { numerator % modulus }
}

/// The exponent operation (^) calculates the result of raising a number to a power.
#[node_macro::node(category("Math: Arithmetic"))]
fn exponent<U: Pow<T>, T>(
	_: impl Ctx,
	/// The base number that will be raised to the power.
	#[implementations(f64, f32, u32)]
	base: U,
	/// The power to which the base number will be raised.
	#[default(2.)]
	#[implementations(f64, f32, u32)]
	power: T,
) -> <U as num_traits::Pow<T>>::Output {
	base.pow(power)
}

/// The square root operation (√) calculates the nth root of a number, equivalent to raising the number to the power of 1/n.
#[node_macro::node(category("Math: Arithmetic"))]
fn root<U: num_traits::float::Float>(
	_: impl Ctx,
	/// The number for which the nth root will be calculated.
	#[default(2.)]
	#[implementations(f64, f32)]
	radicand: U,
	/// The degree of the root to be calculated. Square root is 2, cube root is 3, and so on.
	#[default(2.)]
	#[implementations(f64, f32)]
	degree: U,
) -> U {
	if degree == U::from(2.).unwrap() {
		radicand.sqrt()
	} else if degree == U::from(3.).unwrap() {
		radicand.cbrt()
	} else {
		radicand.powf(U::from(1.).unwrap() / degree)
	}
}

/// The logarithmic function (log) calculates the logarithm of a number with a specified base. If the natural logarithm function (ln) is desired, set the base to "e".
#[node_macro::node(category("Math: Arithmetic"))]
fn logarithm<U: num_traits::float::Float>(
	_: impl Ctx,
	/// The number for which the logarithm will be calculated.
	#[implementations(f64, f32)]
	value: U,
	/// The base of the logarithm, such as 2 (binary), 10 (decimal), and e (natural logarithm).
	#[default(2.)]
	#[implementations(f64, f32)]
	base: U,
) -> U {
	if base == U::from(2.).unwrap() {
		value.log2()
	} else if base == U::from(10.).unwrap() {
		value.log10()
	} else if base - U::from(std::f64::consts::E).unwrap() < U::epsilon() * U::from(1e6).unwrap() {
		value.ln()
	} else {
		value.log(base)
	}
}

/// The sine trigonometric function (sin) calculates the ratio of the angle's opposite side length to its hypotenuse length.
#[node_macro::node(category("Math: Trig"))]
fn sine<U: num_traits::float::Float>(
	_: impl Ctx,
	/// The given angle.
	#[implementations(f64, f32)]
	theta: U,
	/// Whether the given angle should be interpreted as radians instead of degrees.
	radians: bool,
) -> U {
	if radians { theta.sin() } else { theta.to_radians().sin() }
}

/// The cosine trigonometric function (cos) calculates the ratio of the angle's adjacent side length to its hypotenuse length.
#[node_macro::node(category("Math: Trig"))]
fn cosine<U: num_traits::float::Float>(
	_: impl Ctx,
	/// The given angle.
	#[implementations(f64, f32)]
	theta: U,
	/// Whether the given angle should be interpreted as radians instead of degrees.
	radians: bool,
) -> U {
	if radians { theta.cos() } else { theta.to_radians().cos() }
}

/// The tangent trigonometric function (tan) calculates the ratio of the angle's opposite side length to its adjacent side length.
#[node_macro::node(category("Math: Trig"))]
fn tangent<U: num_traits::float::Float>(
	_: impl Ctx,
	/// The given angle.
	#[implementations(f64, f32)]
	theta: U,
	/// Whether the given angle should be interpreted as radians instead of degrees.
	radians: bool,
) -> U {
	if radians { theta.tan() } else { theta.to_radians().tan() }
}

/// The inverse sine trigonometric function (asin) calculates the angle whose sine is the specified value.
#[node_macro::node(category("Math: Trig"))]
fn sine_inverse<U: num_traits::float::Float>(
	_: impl Ctx,
	/// The given value for which the angle will be calculated. Must be in the range [-1, 1] or else the result will be NaN.
	#[implementations(f64, f32)]
	value: U,
	/// Whether the resulting angle should be given in as radians instead of degrees.
	radians: bool,
) -> U {
	if radians { value.asin() } else { value.asin().to_degrees() }
}

/// The inverse cosine trigonometric function (acos) calculates the angle whose cosine is the specified value.
#[node_macro::node(category("Math: Trig"))]
fn cosine_inverse<U: num_traits::float::Float>(
	_: impl Ctx,
	/// The given value for which the angle will be calculated. Must be in the range [-1, 1] or else the result will be NaN.
	#[implementations(f64, f32)]
	value: U,
	/// Whether the resulting angle should be given in as radians instead of degrees.
	radians: bool,
) -> U {
	if radians { value.acos() } else { value.acos().to_degrees() }
}

/// The inverse tangent trigonometric function (atan or atan2, depending on input type) calculates:
/// atan: the angle whose tangent is the specified scalar number.
/// atan2: the angle of a ray from the origin to the specified coordinate.
///
/// The resulting angle is always in the range [0°, 180°] or, in radians, [-π/2, π/2].
#[node_macro::node(category("Math: Trig"))]
fn tangent_inverse<U: TangentInverse>(
	_: impl Ctx,
	/// The given value for which the angle will be calculated.
	#[implementations(f64, f32, DVec2)]
	value: U,
	/// Whether the resulting angle should be given in as radians instead of degrees.
	radians: bool,
) -> U::Output {
	value.atan(radians)
}

pub trait TangentInverse {
	type Output: num_traits::float::Float;
	fn atan(self, radians: bool) -> Self::Output;
}
impl TangentInverse for f32 {
	type Output = f32;
	fn atan(self, radians: bool) -> Self::Output {
		if radians { self.atan() } else { self.atan().to_degrees() }
	}
}
impl TangentInverse for f64 {
	type Output = f64;
	fn atan(self, radians: bool) -> Self::Output {
		if radians { self.atan() } else { self.atan().to_degrees() }
	}
}
impl TangentInverse for DVec2 {
	type Output = f64;
	fn atan(self, radians: bool) -> Self::Output {
		if radians { self.y.atan2(self.x) } else { self.y.atan2(self.x).to_degrees() }
	}
}

/// The random function (rand) converts a seed into a random number within the specified range, inclusive of the minimum and exclusive of the maximum. The minimum and maximum values are automatically swapped if they are reversed.
#[node_macro::node(category("Math: Numeric"))]
fn random<U: num_traits::float::Float>(
	_: impl Ctx,
	_primary: (),
	/// Seed to determine the unique variation of which number will be generated.
	seed: u64,
	/// The smaller end of the range within which the random number will be generated.
	#[implementations(f64, f32)]
	#[default(0.)]
	min: U,
	/// The larger end of the range within which the random number will be generated.
	#[implementations(f64, f32)]
	#[default(1.)]
	max: U,
) -> f64 {
	let mut rng = rand::rngs::StdRng::seed_from_u64(seed);
	let result = rng.random::<f64>();
	let (min, max) = if min < max { (min, max) } else { (max, min) };
	let (min, max) = (min.to_f64().unwrap(), max.to_f64().unwrap());
	result * (max - min) + min
}

/// Convert a number to an integer of the type u32, which may be the required type for certain node inputs. This will be removed in the future when automatic type conversion is implemented.
#[node_macro::node(name("To u32"), category("Math: Numeric"))]
fn to_u32<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U) -> u32 {
	let value = U::clamp(value, U::from(0.).unwrap(), U::from(u32::MAX as f64).unwrap());
	value.to_u32().unwrap()
}

/// Convert a number to an integer of the type u64, which may be the required type for certain node inputs. This will be removed in the future when automatic type conversion is implemented.
#[node_macro::node(name("To u64"), category("Math: Numeric"))]
fn to_u64<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U) -> u64 {
	let value = U::clamp(value, U::from(0.).unwrap(), U::from(u64::MAX as f64).unwrap());
	value.to_u64().unwrap()
}

/// Convert an integer to a decimal number of the type f64, which may be the required type for certain node inputs. This will be removed in the future when automatic type conversion is implemented.
#[node_macro::node(name("To f64"), category("Math: Numeric"))]
fn to_f64<U: num_traits::int::PrimInt>(_: impl Ctx, #[implementations(u32, u64)] value: U) -> f64 {
	value.to_f64().unwrap()
}

/// The rounding function (round) maps an input value to its nearest whole number. Halfway values are rounded away from zero.
#[node_macro::node(category("Math: Numeric"))]
fn round<U: num_traits::float::Float>(
	_: impl Ctx,
	/// The number which will be rounded.
	#[implementations(f64, f32)]
	value: U,
) -> U {
	value.round()
}

/// The floor function (floor) rounds down an input value to the nearest whole number, unless the input number is already whole.
#[node_macro::node(category("Math: Numeric"))]
fn floor<U: num_traits::float::Float>(
	_: impl Ctx,
	/// The number which will be rounded down.
	#[implementations(f64, f32)]
	value: U,
) -> U {
	value.floor()
}

/// The ceiling function (ceil) rounds up an input value to the nearest whole number, unless the input number is already whole.
#[node_macro::node(category("Math: Numeric"))]
fn ceiling<U: num_traits::float::Float>(
	_: impl Ctx,
	/// The number which will be rounded up.
	#[implementations(f64, f32)]
	value: U,
) -> U {
	value.ceil()
}

/// The absolute value function (abs) removes the negative sign from an input value, if present.
#[node_macro::node(category("Math: Numeric"))]
fn absolute_value<U: num_traits::float::Float>(
	_: impl Ctx,
	/// The number which will be made positive.
	#[implementations(f64, f32)]
	value: U,
) -> U {
	value.abs()
}

/// The minimum function (min) picks the smaller of two numbers.
#[node_macro::node(category("Math: Numeric"))]
fn min<T: std::cmp::PartialOrd>(
	_: impl Ctx,
	/// One of the two numbers, of which the lesser will be returned.
	#[implementations(f64, f32, u32, &str)]
	value: T,
	/// The other of the two numbers, of which the lesser will be returned.
	#[implementations(f64, f32, u32, &str)]
	other_value: T,
) -> T {
	if value < other_value { value } else { other_value }
}

/// The maximum function (max) picks the larger of two numbers.
#[node_macro::node(category("Math: Numeric"))]
fn max<T: std::cmp::PartialOrd>(
	_: impl Ctx,
	/// One of the two numbers, of which the greater will be returned.
	#[implementations(f64, f32, u32, &str)]
	value: T,
	/// The other of the two numbers, of which the greater will be returned.
	#[implementations(f64, f32, u32, &str)]
	other_value: T,
) -> T {
	if value > other_value { value } else { other_value }
}

/// The clamp function (clamp) restricts a number to a specified range between a minimum and maximum value. The minimum and maximum values are automatically swapped if they are reversed.
#[node_macro::node(category("Math: Numeric"))]
fn clamp<T: std::cmp::PartialOrd>(
	_: impl Ctx,
	/// The number to be clamped, which will be restricted to the range between the minimum and maximum values.
	#[implementations(f64, f32, u32, &str)]
	value: T,
	/// The left (smaller) side of the range. The output will never be less than this number.
	#[implementations(f64, f32, u32, &str)]
	min: T,
	/// The right (greater) side of the range. The output will never be greater than this number.
	#[implementations(f64, f32, u32, &str)]
	max: T,
) -> T {
	let (min, max) = if min < max { (min, max) } else { (max, min) };
	if value < min {
		min
	} else if value > max {
		max
	} else {
		value
	}
}

/// The equality operation (==) compares two values and returns true if they are equal, or false if they are not.
#[node_macro::node(category("Math: Logic"))]
fn equals<U: std::cmp::PartialEq<T>, T>(
	_: impl Ctx,
	/// One of the two numbers to compare for equality.
	#[implementations(f64, f32, u32, DVec2, &str)]
	value: T,
	/// The other of the two numbers to compare for equality.
	#[implementations(f64, f32, u32, DVec2, &str)]
	other_value: U,
) -> bool {
	other_value == value
}

/// The inequality operation (!=) compares two values and returns true if they are not equal, or false if they are.
#[node_macro::node(category("Math: Logic"))]
fn not_equals<U: std::cmp::PartialEq<T>, T>(
	_: impl Ctx,
	/// One of the two numbers to compare for inequality.
	#[implementations(f64, f32, u32, DVec2, &str)]
	value: T,
	/// The other of the two numbers to compare for inequality.
	#[implementations(f64, f32, u32, DVec2, &str)]
	other_value: U,
) -> bool {
	other_value != value
}

/// The less-than operation (<) compares two values and returns true if the first value is less than the second, or false if it is not.
/// If enabled with "Or Equal", the less-than-or-equal operation (<=) will be used instead.
#[node_macro::node(category("Math: Logic"))]
fn less_than<T: std::cmp::PartialOrd<T>>(
	_: impl Ctx,
	/// The number on the left-hand side of the comparison.
	#[implementations(f64, f32, u32)]
	value: T,
	/// The number on the right-hand side of the comparison.
	#[implementations(f64, f32, u32)]
	other_value: T,
	/// Uses the less-than-or-equal operation (<=) instead of the less-than operation (<).
	or_equal: bool,
) -> bool {
	if or_equal { value <= other_value } else { value < other_value }
}

/// The greater-than operation (>) compares two values and returns true if the first value is greater than the second, or false if it is not.
/// If enabled with "Or Equal", the greater-than-or-equal operation (>=) will be used instead.
#[node_macro::node(category("Math: Logic"))]
fn greater_than<T: std::cmp::PartialOrd<T>>(
	_: impl Ctx,
	/// The number on the left-hand side of the comparison.
	#[implementations(f64, f32, u32)]
	value: T,
	/// The number on the right-hand side of the comparison.
	#[implementations(f64, f32, u32)]
	other_value: T,
	/// Uses the greater-than-or-equal operation (>=) instead of the greater-than operation (>).
	or_equal: bool,
) -> bool {
	if or_equal { value >= other_value } else { value > other_value }
}

/// The logical or operation (||) returns true if either of the two inputs are true, or false if both are false.
#[node_macro::node(category("Math: Logic"))]
fn logical_or(
	_: impl Ctx,
	/// One of the two boolean values, either of which may be true for the node to output true.
	value: bool,
	/// The other of the two boolean values, either of which may be true for the node to output true.
	other_value: bool,
) -> bool {
	value || other_value
}

/// The logical and operation (&&) returns true if both of the two inputs are true, or false if any are false.
#[node_macro::node(category("Math: Logic"))]
fn logical_and(
	_: impl Ctx,
	/// One of the two boolean values, both of which must be true for the node to output true.
	value: bool,
	/// The other of the two boolean values, both of which must be true for the node to output true.
	other_value: bool,
) -> bool {
	value && other_value
}

/// The logical not operation (!) reverses true and false value of the input.
#[node_macro::node(category("Math: Logic"))]
fn logical_not(
	_: impl Ctx,
	/// The boolean value to be reversed.
	input: bool,
) -> bool {
	!input
}

/// Constructs a bool value which may be set to true or false.
#[node_macro::node(category("Value"))]
fn bool_value(_: impl Ctx, _primary: (), #[name("Bool")] bool_value: bool) -> bool {
	bool_value
}

/// Constructs a number value which may be set to any real number.
#[node_macro::node(category("Value"))]
fn number_value(_: impl Ctx, _primary: (), number: f64) -> f64 {
	number
}

/// Constructs a number value which may be set to any value from 0% to 100% by dragging the slider.
#[node_macro::node(category("Value"))]
fn percentage_value(_: impl Ctx, _primary: (), percentage: Percentage) -> f64 {
	percentage
}

/// Constructs a two-dimensional vector value which may be set to any XY coordinate.
#[node_macro::node(category("Value"))]
fn coordinate_value(_: impl Ctx, _primary: (), x: f64, y: f64) -> DVec2 {
	DVec2::new(x, y)
}

/// Constructs a color value which may be set to any color, or no color.
#[node_macro::node(category("Value"))]
fn color_value(_: impl Ctx, _primary: (), #[default(Color::BLACK)] color: Option<Color>) -> Option<Color> {
	color
}

/// Gets the color at the specified position along the gradient, given a position from 0 (left) to 1 (right).
#[node_macro::node(category("Color"))]
fn sample_gradient(_: impl Ctx, _primary: (), gradient: GradientStops, position: Fraction) -> Color {
	let position = position.clamp(0., 1.);
	gradient.evaluate(position)
}

/// Constructs a gradient value which may be set to any sequence of color stops to represent the transition between colors.
#[node_macro::node(category("Value"))]
fn gradient_value(_: impl Ctx, _primary: (), gradient: GradientStops) -> GradientStops {
	gradient
}

/// Constructs a string value which may be set to any plain text.
#[node_macro::node(category("Value"))]
fn string_value(_: impl Ctx, _primary: (), string: TextArea) -> String {
	string
}

#[node_macro::node(category("Math: Vector"))]
fn dot_product(_: impl Ctx, vector_a: DVec2, vector_b: DVec2) -> f64 {
	vector_a.dot(vector_b)
}

#[cfg(test)]
mod test {
	use super::*;
	use graphene_core::Node;
	use graphene_core::generic::FnNode;

	#[test]
	pub fn dot_product_function() {
		let vector_a = DVec2::new(1., 2.);
		let vector_b = DVec2::new(3., 4.);
		assert_eq!(dot_product((), vector_a, vector_b), 11.);
	}

	#[test]
	fn test_basic_expression() {
		let result = math((), 0., "2 + 2".to_string(), 0.);
		assert_eq!(result, 4.);
	}

	#[test]
	fn test_complex_expression() {
		let result = math((), 0., "(5 * 3) + (10 / 2)".to_string(), 0.);
		assert_eq!(result, 20.);
	}

	#[test]
	fn test_default_expression() {
		let result = math((), 0., "0".to_string(), 0.);
		assert_eq!(result, 0.);
	}

	#[test]
	fn test_invalid_expression() {
		let result = math((), 0., "invalid".to_string(), 0.);
		assert_eq!(result, 0.);
	}

	#[test]
	pub fn foo() {
		let fnn = FnNode::new(|(a, b)| (b, a));
		assert_eq!(fnn.eval((1u32, 2u32)), (2, 1));
	}

	#[test]
	pub fn add_vectors() {
		assert_eq!(super::add((), DVec2::ONE, DVec2::ONE), DVec2::ONE * 2.);
	}

	#[test]
	pub fn subtract_f64() {
		assert_eq!(super::subtract((), 5_f64, 3_f64), 2.);
	}

	#[test]
	pub fn divide_vectors() {
		assert_eq!(super::divide((), DVec2::ONE, 2_f64), DVec2::ONE / 2.);
	}

	#[test]
	pub fn modulo_positive() {
		assert_eq!(super::modulo((), -5_f64, 2_f64, true), 1_f64);
	}

	#[test]
	pub fn modulo_negative() {
		assert_eq!(super::modulo((), -5_f64, 2_f64, false), -1_f64);
	}
}