File size: 23,285 Bytes
2409829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
use glam::DVec2;
use graphene_core::gradient::GradientStops;
use graphene_core::registry::types::{Fraction, Percentage, TextArea};
use graphene_core::{Color, Ctx, num_traits};
use log::warn;
use math_parser::ast;
use math_parser::context::{EvalContext, NothingMap, ValueProvider};
use math_parser::value::{Number, Value};
use num_traits::Pow;
use rand::{Rng, SeedableRng};
use std::ops::{Add, Div, Mul, Rem, Sub};
/// The struct that stores the context for the maths parser.
/// This is currently just limited to supplying `a` and `b` until we add better node graph support and UI for variadic inputs.
struct MathNodeContext {
a: f64,
b: f64,
}
impl ValueProvider for MathNodeContext {
fn get_value(&self, name: &str) -> Option<Value> {
if name.eq_ignore_ascii_case("a") {
Some(Value::from_f64(self.a))
} else if name.eq_ignore_ascii_case("b") {
Some(Value::from_f64(self.b))
} else {
None
}
}
}
/// Calculates a mathematical expression with input values "A" and "B"
#[node_macro::node(category("Math: Arithmetic"), properties("math_properties"))]
fn math<U: num_traits::float::Float>(
_: impl Ctx,
/// The value of "A" when calculating the expression
#[implementations(f64, f32)]
operand_a: U,
/// A math expression that may incorporate "A" and/or "B", such as "sqrt(A + B) - B^2"
#[default(A + B)]
expression: String,
/// The value of "B" when calculating the expression
#[implementations(f64, f32)]
#[default(1.)]
operand_b: U,
) -> U {
let (node, _unit) = match ast::Node::try_parse_from_str(&expression) {
Ok(expr) => expr,
Err(e) => {
warn!("Invalid expression: `{expression}`\n{e:?}");
return U::from(0.).unwrap();
}
};
let context = EvalContext::new(
MathNodeContext {
a: operand_a.to_f64().unwrap(),
b: operand_b.to_f64().unwrap(),
},
NothingMap,
);
let value = match node.eval(&context) {
Ok(value) => value,
Err(e) => {
warn!("Expression evaluation error: {e:?}");
return U::from(0.).unwrap();
}
};
let Value::Number(num) = value;
match num {
Number::Real(val) => U::from(val).unwrap(),
Number::Complex(c) => U::from(c.re).unwrap(),
}
}
/// The addition operation (+) calculates the sum of two numbers.
#[node_macro::node(category("Math: Arithmetic"))]
fn add<U: Add<T>, T>(
_: impl Ctx,
/// The left-hand side of the addition operation.
#[implementations(f64, f32, u32, DVec2, f64, DVec2)]
augend: U,
/// The right-hand side of the addition operation.
#[implementations(f64, f32, u32, DVec2, DVec2, f64)]
addend: T,
) -> <U as Add<T>>::Output {
augend + addend
}
/// The subtraction operation (-) calculates the difference between two numbers.
#[node_macro::node(category("Math: Arithmetic"))]
fn subtract<U: Sub<T>, T>(
_: impl Ctx,
/// The left-hand side of the subtraction operation.
#[implementations(f64, f32, u32, DVec2, f64, DVec2)]
minuend: U,
/// The right-hand side of the subtraction operation.
#[implementations(f64, f32, u32, DVec2, DVec2, f64)]
subtrahend: T,
) -> <U as Sub<T>>::Output {
minuend - subtrahend
}
/// The multiplication operation (×) calculates the product of two numbers.
#[node_macro::node(category("Math: Arithmetic"))]
fn multiply<U: Mul<T>, T>(
_: impl Ctx,
/// The left-hand side of the multiplication operation.
#[implementations(f64, f32, u32, DVec2, f64, DVec2)]
multiplier: U,
/// The right-hand side of the multiplication operation.
#[default(1.)]
#[implementations(f64, f32, u32, DVec2, DVec2, f64)]
multiplicand: T,
) -> <U as Mul<T>>::Output {
multiplier * multiplicand
}
/// The division operation (÷) calculates the quotient of two numbers.
///
/// Produces 0 if the denominator is 0.
#[node_macro::node(category("Math: Arithmetic"))]
fn divide<U: Div<T> + Default + PartialEq, T: Default + PartialEq>(
_: impl Ctx,
/// The left-hand side of the division operation.
#[implementations(f64, f64, f32, f32, u32, u32, DVec2, DVec2, f64)]
numerator: U,
/// The right-hand side of the division operation.
#[default(1.)]
#[implementations(f64, f64, f32, f32, u32, u32, DVec2, f64, DVec2)]
denominator: T,
) -> <U as Div<T>>::Output
where
<U as Div<T>>::Output: Default,
{
if denominator == T::default() {
return <U as Div<T>>::Output::default();
}
numerator / denominator
}
/// The modulo operation (%) calculates the remainder from the division of two numbers. The sign of the result shares the sign of the numerator unless "Always Positive" is enabled.
#[node_macro::node(category("Math: Arithmetic"))]
fn modulo<U: Rem<T, Output: Add<T, Output: Rem<T, Output = U::Output>>>, T: Copy>(
_: impl Ctx,
/// The left-hand side of the modulo operation.
#[implementations(f64, f32, u32, DVec2, DVec2, f64)]
numerator: U,
/// The right-hand side of the modulo operation.
#[default(2.)]
#[implementations(f64, f32, u32, DVec2, f64, DVec2)]
modulus: T,
/// Ensures the result will always be positive, even if the numerator is negative.
#[default(true)]
always_positive: bool,
) -> <U as Rem<T>>::Output {
if always_positive { (numerator % modulus + modulus) % modulus } else { numerator % modulus }
}
/// The exponent operation (^) calculates the result of raising a number to a power.
#[node_macro::node(category("Math: Arithmetic"))]
fn exponent<U: Pow<T>, T>(
_: impl Ctx,
/// The base number that will be raised to the power.
#[implementations(f64, f32, u32)]
base: U,
/// The power to which the base number will be raised.
#[default(2.)]
#[implementations(f64, f32, u32)]
power: T,
) -> <U as num_traits::Pow<T>>::Output {
base.pow(power)
}
/// The square root operation (√) calculates the nth root of a number, equivalent to raising the number to the power of 1/n.
#[node_macro::node(category("Math: Arithmetic"))]
fn root<U: num_traits::float::Float>(
_: impl Ctx,
/// The number for which the nth root will be calculated.
#[default(2.)]
#[implementations(f64, f32)]
radicand: U,
/// The degree of the root to be calculated. Square root is 2, cube root is 3, and so on.
#[default(2.)]
#[implementations(f64, f32)]
degree: U,
) -> U {
if degree == U::from(2.).unwrap() {
radicand.sqrt()
} else if degree == U::from(3.).unwrap() {
radicand.cbrt()
} else {
radicand.powf(U::from(1.).unwrap() / degree)
}
}
/// The logarithmic function (log) calculates the logarithm of a number with a specified base. If the natural logarithm function (ln) is desired, set the base to "e".
#[node_macro::node(category("Math: Arithmetic"))]
fn logarithm<U: num_traits::float::Float>(
_: impl Ctx,
/// The number for which the logarithm will be calculated.
#[implementations(f64, f32)]
value: U,
/// The base of the logarithm, such as 2 (binary), 10 (decimal), and e (natural logarithm).
#[default(2.)]
#[implementations(f64, f32)]
base: U,
) -> U {
if base == U::from(2.).unwrap() {
value.log2()
} else if base == U::from(10.).unwrap() {
value.log10()
} else if base - U::from(std::f64::consts::E).unwrap() < U::epsilon() * U::from(1e6).unwrap() {
value.ln()
} else {
value.log(base)
}
}
/// The sine trigonometric function (sin) calculates the ratio of the angle's opposite side length to its hypotenuse length.
#[node_macro::node(category("Math: Trig"))]
fn sine<U: num_traits::float::Float>(
_: impl Ctx,
/// The given angle.
#[implementations(f64, f32)]
theta: U,
/// Whether the given angle should be interpreted as radians instead of degrees.
radians: bool,
) -> U {
if radians { theta.sin() } else { theta.to_radians().sin() }
}
/// The cosine trigonometric function (cos) calculates the ratio of the angle's adjacent side length to its hypotenuse length.
#[node_macro::node(category("Math: Trig"))]
fn cosine<U: num_traits::float::Float>(
_: impl Ctx,
/// The given angle.
#[implementations(f64, f32)]
theta: U,
/// Whether the given angle should be interpreted as radians instead of degrees.
radians: bool,
) -> U {
if radians { theta.cos() } else { theta.to_radians().cos() }
}
/// The tangent trigonometric function (tan) calculates the ratio of the angle's opposite side length to its adjacent side length.
#[node_macro::node(category("Math: Trig"))]
fn tangent<U: num_traits::float::Float>(
_: impl Ctx,
/// The given angle.
#[implementations(f64, f32)]
theta: U,
/// Whether the given angle should be interpreted as radians instead of degrees.
radians: bool,
) -> U {
if radians { theta.tan() } else { theta.to_radians().tan() }
}
/// The inverse sine trigonometric function (asin) calculates the angle whose sine is the specified value.
#[node_macro::node(category("Math: Trig"))]
fn sine_inverse<U: num_traits::float::Float>(
_: impl Ctx,
/// The given value for which the angle will be calculated. Must be in the range [-1, 1] or else the result will be NaN.
#[implementations(f64, f32)]
value: U,
/// Whether the resulting angle should be given in as radians instead of degrees.
radians: bool,
) -> U {
if radians { value.asin() } else { value.asin().to_degrees() }
}
/// The inverse cosine trigonometric function (acos) calculates the angle whose cosine is the specified value.
#[node_macro::node(category("Math: Trig"))]
fn cosine_inverse<U: num_traits::float::Float>(
_: impl Ctx,
/// The given value for which the angle will be calculated. Must be in the range [-1, 1] or else the result will be NaN.
#[implementations(f64, f32)]
value: U,
/// Whether the resulting angle should be given in as radians instead of degrees.
radians: bool,
) -> U {
if radians { value.acos() } else { value.acos().to_degrees() }
}
/// The inverse tangent trigonometric function (atan or atan2, depending on input type) calculates:
/// atan: the angle whose tangent is the specified scalar number.
/// atan2: the angle of a ray from the origin to the specified coordinate.
///
/// The resulting angle is always in the range [0°, 180°] or, in radians, [-π/2, π/2].
#[node_macro::node(category("Math: Trig"))]
fn tangent_inverse<U: TangentInverse>(
_: impl Ctx,
/// The given value for which the angle will be calculated.
#[implementations(f64, f32, DVec2)]
value: U,
/// Whether the resulting angle should be given in as radians instead of degrees.
radians: bool,
) -> U::Output {
value.atan(radians)
}
pub trait TangentInverse {
type Output: num_traits::float::Float;
fn atan(self, radians: bool) -> Self::Output;
}
impl TangentInverse for f32 {
type Output = f32;
fn atan(self, radians: bool) -> Self::Output {
if radians { self.atan() } else { self.atan().to_degrees() }
}
}
impl TangentInverse for f64 {
type Output = f64;
fn atan(self, radians: bool) -> Self::Output {
if radians { self.atan() } else { self.atan().to_degrees() }
}
}
impl TangentInverse for DVec2 {
type Output = f64;
fn atan(self, radians: bool) -> Self::Output {
if radians { self.y.atan2(self.x) } else { self.y.atan2(self.x).to_degrees() }
}
}
/// The random function (rand) converts a seed into a random number within the specified range, inclusive of the minimum and exclusive of the maximum. The minimum and maximum values are automatically swapped if they are reversed.
#[node_macro::node(category("Math: Numeric"))]
fn random<U: num_traits::float::Float>(
_: impl Ctx,
_primary: (),
/// Seed to determine the unique variation of which number will be generated.
seed: u64,
/// The smaller end of the range within which the random number will be generated.
#[implementations(f64, f32)]
#[default(0.)]
min: U,
/// The larger end of the range within which the random number will be generated.
#[implementations(f64, f32)]
#[default(1.)]
max: U,
) -> f64 {
let mut rng = rand::rngs::StdRng::seed_from_u64(seed);
let result = rng.random::<f64>();
let (min, max) = if min < max { (min, max) } else { (max, min) };
let (min, max) = (min.to_f64().unwrap(), max.to_f64().unwrap());
result * (max - min) + min
}
/// Convert a number to an integer of the type u32, which may be the required type for certain node inputs. This will be removed in the future when automatic type conversion is implemented.
#[node_macro::node(name("To u32"), category("Math: Numeric"))]
fn to_u32<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U) -> u32 {
let value = U::clamp(value, U::from(0.).unwrap(), U::from(u32::MAX as f64).unwrap());
value.to_u32().unwrap()
}
/// Convert a number to an integer of the type u64, which may be the required type for certain node inputs. This will be removed in the future when automatic type conversion is implemented.
#[node_macro::node(name("To u64"), category("Math: Numeric"))]
fn to_u64<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U) -> u64 {
let value = U::clamp(value, U::from(0.).unwrap(), U::from(u64::MAX as f64).unwrap());
value.to_u64().unwrap()
}
/// Convert an integer to a decimal number of the type f64, which may be the required type for certain node inputs. This will be removed in the future when automatic type conversion is implemented.
#[node_macro::node(name("To f64"), category("Math: Numeric"))]
fn to_f64<U: num_traits::int::PrimInt>(_: impl Ctx, #[implementations(u32, u64)] value: U) -> f64 {
value.to_f64().unwrap()
}
/// The rounding function (round) maps an input value to its nearest whole number. Halfway values are rounded away from zero.
#[node_macro::node(category("Math: Numeric"))]
fn round<U: num_traits::float::Float>(
_: impl Ctx,
/// The number which will be rounded.
#[implementations(f64, f32)]
value: U,
) -> U {
value.round()
}
/// The floor function (floor) rounds down an input value to the nearest whole number, unless the input number is already whole.
#[node_macro::node(category("Math: Numeric"))]
fn floor<U: num_traits::float::Float>(
_: impl Ctx,
/// The number which will be rounded down.
#[implementations(f64, f32)]
value: U,
) -> U {
value.floor()
}
/// The ceiling function (ceil) rounds up an input value to the nearest whole number, unless the input number is already whole.
#[node_macro::node(category("Math: Numeric"))]
fn ceiling<U: num_traits::float::Float>(
_: impl Ctx,
/// The number which will be rounded up.
#[implementations(f64, f32)]
value: U,
) -> U {
value.ceil()
}
/// The absolute value function (abs) removes the negative sign from an input value, if present.
#[node_macro::node(category("Math: Numeric"))]
fn absolute_value<U: num_traits::float::Float>(
_: impl Ctx,
/// The number which will be made positive.
#[implementations(f64, f32)]
value: U,
) -> U {
value.abs()
}
/// The minimum function (min) picks the smaller of two numbers.
#[node_macro::node(category("Math: Numeric"))]
fn min<T: std::cmp::PartialOrd>(
_: impl Ctx,
/// One of the two numbers, of which the lesser will be returned.
#[implementations(f64, f32, u32, &str)]
value: T,
/// The other of the two numbers, of which the lesser will be returned.
#[implementations(f64, f32, u32, &str)]
other_value: T,
) -> T {
if value < other_value { value } else { other_value }
}
/// The maximum function (max) picks the larger of two numbers.
#[node_macro::node(category("Math: Numeric"))]
fn max<T: std::cmp::PartialOrd>(
_: impl Ctx,
/// One of the two numbers, of which the greater will be returned.
#[implementations(f64, f32, u32, &str)]
value: T,
/// The other of the two numbers, of which the greater will be returned.
#[implementations(f64, f32, u32, &str)]
other_value: T,
) -> T {
if value > other_value { value } else { other_value }
}
/// The clamp function (clamp) restricts a number to a specified range between a minimum and maximum value. The minimum and maximum values are automatically swapped if they are reversed.
#[node_macro::node(category("Math: Numeric"))]
fn clamp<T: std::cmp::PartialOrd>(
_: impl Ctx,
/// The number to be clamped, which will be restricted to the range between the minimum and maximum values.
#[implementations(f64, f32, u32, &str)]
value: T,
/// The left (smaller) side of the range. The output will never be less than this number.
#[implementations(f64, f32, u32, &str)]
min: T,
/// The right (greater) side of the range. The output will never be greater than this number.
#[implementations(f64, f32, u32, &str)]
max: T,
) -> T {
let (min, max) = if min < max { (min, max) } else { (max, min) };
if value < min {
min
} else if value > max {
max
} else {
value
}
}
/// The equality operation (==) compares two values and returns true if they are equal, or false if they are not.
#[node_macro::node(category("Math: Logic"))]
fn equals<U: std::cmp::PartialEq<T>, T>(
_: impl Ctx,
/// One of the two numbers to compare for equality.
#[implementations(f64, f32, u32, DVec2, &str)]
value: T,
/// The other of the two numbers to compare for equality.
#[implementations(f64, f32, u32, DVec2, &str)]
other_value: U,
) -> bool {
other_value == value
}
/// The inequality operation (!=) compares two values and returns true if they are not equal, or false if they are.
#[node_macro::node(category("Math: Logic"))]
fn not_equals<U: std::cmp::PartialEq<T>, T>(
_: impl Ctx,
/// One of the two numbers to compare for inequality.
#[implementations(f64, f32, u32, DVec2, &str)]
value: T,
/// The other of the two numbers to compare for inequality.
#[implementations(f64, f32, u32, DVec2, &str)]
other_value: U,
) -> bool {
other_value != value
}
/// The less-than operation (<) compares two values and returns true if the first value is less than the second, or false if it is not.
/// If enabled with "Or Equal", the less-than-or-equal operation (<=) will be used instead.
#[node_macro::node(category("Math: Logic"))]
fn less_than<T: std::cmp::PartialOrd<T>>(
_: impl Ctx,
/// The number on the left-hand side of the comparison.
#[implementations(f64, f32, u32)]
value: T,
/// The number on the right-hand side of the comparison.
#[implementations(f64, f32, u32)]
other_value: T,
/// Uses the less-than-or-equal operation (<=) instead of the less-than operation (<).
or_equal: bool,
) -> bool {
if or_equal { value <= other_value } else { value < other_value }
}
/// The greater-than operation (>) compares two values and returns true if the first value is greater than the second, or false if it is not.
/// If enabled with "Or Equal", the greater-than-or-equal operation (>=) will be used instead.
#[node_macro::node(category("Math: Logic"))]
fn greater_than<T: std::cmp::PartialOrd<T>>(
_: impl Ctx,
/// The number on the left-hand side of the comparison.
#[implementations(f64, f32, u32)]
value: T,
/// The number on the right-hand side of the comparison.
#[implementations(f64, f32, u32)]
other_value: T,
/// Uses the greater-than-or-equal operation (>=) instead of the greater-than operation (>).
or_equal: bool,
) -> bool {
if or_equal { value >= other_value } else { value > other_value }
}
/// The logical or operation (||) returns true if either of the two inputs are true, or false if both are false.
#[node_macro::node(category("Math: Logic"))]
fn logical_or(
_: impl Ctx,
/// One of the two boolean values, either of which may be true for the node to output true.
value: bool,
/// The other of the two boolean values, either of which may be true for the node to output true.
other_value: bool,
) -> bool {
value || other_value
}
/// The logical and operation (&&) returns true if both of the two inputs are true, or false if any are false.
#[node_macro::node(category("Math: Logic"))]
fn logical_and(
_: impl Ctx,
/// One of the two boolean values, both of which must be true for the node to output true.
value: bool,
/// The other of the two boolean values, both of which must be true for the node to output true.
other_value: bool,
) -> bool {
value && other_value
}
/// The logical not operation (!) reverses true and false value of the input.
#[node_macro::node(category("Math: Logic"))]
fn logical_not(
_: impl Ctx,
/// The boolean value to be reversed.
input: bool,
) -> bool {
!input
}
/// Constructs a bool value which may be set to true or false.
#[node_macro::node(category("Value"))]
fn bool_value(_: impl Ctx, _primary: (), #[name("Bool")] bool_value: bool) -> bool {
bool_value
}
/// Constructs a number value which may be set to any real number.
#[node_macro::node(category("Value"))]
fn number_value(_: impl Ctx, _primary: (), number: f64) -> f64 {
number
}
/// Constructs a number value which may be set to any value from 0% to 100% by dragging the slider.
#[node_macro::node(category("Value"))]
fn percentage_value(_: impl Ctx, _primary: (), percentage: Percentage) -> f64 {
percentage
}
/// Constructs a two-dimensional vector value which may be set to any XY coordinate.
#[node_macro::node(category("Value"))]
fn coordinate_value(_: impl Ctx, _primary: (), x: f64, y: f64) -> DVec2 {
DVec2::new(x, y)
}
/// Constructs a color value which may be set to any color, or no color.
#[node_macro::node(category("Value"))]
fn color_value(_: impl Ctx, _primary: (), #[default(Color::BLACK)] color: Option<Color>) -> Option<Color> {
color
}
/// Gets the color at the specified position along the gradient, given a position from 0 (left) to 1 (right).
#[node_macro::node(category("Color"))]
fn sample_gradient(_: impl Ctx, _primary: (), gradient: GradientStops, position: Fraction) -> Color {
let position = position.clamp(0., 1.);
gradient.evaluate(position)
}
/// Constructs a gradient value which may be set to any sequence of color stops to represent the transition between colors.
#[node_macro::node(category("Value"))]
fn gradient_value(_: impl Ctx, _primary: (), gradient: GradientStops) -> GradientStops {
gradient
}
/// Constructs a string value which may be set to any plain text.
#[node_macro::node(category("Value"))]
fn string_value(_: impl Ctx, _primary: (), string: TextArea) -> String {
string
}
#[node_macro::node(category("Math: Vector"))]
fn dot_product(_: impl Ctx, vector_a: DVec2, vector_b: DVec2) -> f64 {
vector_a.dot(vector_b)
}
#[cfg(test)]
mod test {
use super::*;
use graphene_core::Node;
use graphene_core::generic::FnNode;
#[test]
pub fn dot_product_function() {
let vector_a = DVec2::new(1., 2.);
let vector_b = DVec2::new(3., 4.);
assert_eq!(dot_product((), vector_a, vector_b), 11.);
}
#[test]
fn test_basic_expression() {
let result = math((), 0., "2 + 2".to_string(), 0.);
assert_eq!(result, 4.);
}
#[test]
fn test_complex_expression() {
let result = math((), 0., "(5 * 3) + (10 / 2)".to_string(), 0.);
assert_eq!(result, 20.);
}
#[test]
fn test_default_expression() {
let result = math((), 0., "0".to_string(), 0.);
assert_eq!(result, 0.);
}
#[test]
fn test_invalid_expression() {
let result = math((), 0., "invalid".to_string(), 0.);
assert_eq!(result, 0.);
}
#[test]
pub fn foo() {
let fnn = FnNode::new(|(a, b)| (b, a));
assert_eq!(fnn.eval((1u32, 2u32)), (2, 1));
}
#[test]
pub fn add_vectors() {
assert_eq!(super::add((), DVec2::ONE, DVec2::ONE), DVec2::ONE * 2.);
}
#[test]
pub fn subtract_f64() {
assert_eq!(super::subtract((), 5_f64, 3_f64), 2.);
}
#[test]
pub fn divide_vectors() {
assert_eq!(super::divide((), DVec2::ONE, 2_f64), DVec2::ONE / 2.);
}
#[test]
pub fn modulo_positive() {
assert_eq!(super::modulo((), -5_f64, 2_f64, true), 1_f64);
}
#[test]
pub fn modulo_negative() {
assert_eq!(super::modulo((), -5_f64, 2_f64, false), -1_f64);
}
}
|