File size: 73,548 Bytes
2409829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 |
pub mod value;
use crate::document::value::TaggedValue;
use crate::proto::{ConstructionArgs, ProtoNetwork, ProtoNode, ProtoNodeInput};
use dyn_any::DynAny;
use glam::IVec2;
use graphene_core::memo::MemoHashGuard;
pub use graphene_core::uuid::NodeId;
pub use graphene_core::uuid::generate_uuid;
use graphene_core::{Cow, MemoHash, ProtoNodeIdentifier, Type};
use log::Metadata;
use rustc_hash::FxHashMap;
use std::collections::HashMap;
use std::collections::hash_map::DefaultHasher;
use std::hash::{Hash, Hasher};
/// Hash two IDs together, returning a new ID that is always consistent for two input IDs in a specific order.
/// This is used during [`NodeNetwork::flatten`] in order to ensure consistent yet non-conflicting IDs for inner networks.
fn merge_ids(a: NodeId, b: NodeId) -> NodeId {
let mut hasher = DefaultHasher::new();
a.hash(&mut hasher);
b.hash(&mut hasher);
NodeId(hasher.finish())
}
/// Utility function for providing a default boolean value to serde.
#[inline(always)]
fn return_true() -> bool {
true
}
/// An instance of a [`DocumentNodeDefinition`] that has been instantiated in a [`NodeNetwork`].
/// Currently, when an instance is made, it lives all on its own without any lasting connection to the definition.
/// But we will want to change it in the future so it merely references its definition.
#[derive(Clone, Debug, PartialEq, Hash, DynAny, serde::Serialize, serde::Deserialize)]
pub struct DocumentNode {
/// The inputs to a node, which are either:
/// - From other nodes within this graph [`NodeInput::Node`],
/// - A constant value [`NodeInput::Value`],
/// - A [`NodeInput::Network`] which specifies that this input is from outside the graph, which is resolved in the graph flattening step in the case of nested networks.
///
/// In the root network, it is resolved when evaluating the borrow tree.
/// Ensure the click target in the encapsulating network is updated when the inputs cause the node shape to change (currently only when exposing/hiding an input)
/// by using network.update_click_target(node_id).
#[cfg_attr(target_arch = "wasm32", serde(alias = "outputs"))]
pub inputs: Vec<NodeInput>,
/// Manual composition is the methodology by which most nodes are implemented, involving a call argument and upstream inputs.
/// By contrast, automatic composition is an alternative way to handle the composition of nodes as they execute in the graph.
/// Normally, the program (the compiled graph) builds up its call stack, with each node calling its upstream predecessor to acquire its input data.
/// When the document graph becomes the proto graph, that conceptual model changes into a model that's unique to the proto graph.
/// Automatic composition allows a document node to be translated into its place in the proto graph differently, such that
/// the node doesn't participate in that process of being called with a call argument and calling its upstream predecessor.
/// Instead, it is called directly with its input data from the upstream node, skipping the call stack building process.
/// The abstraction is provided by the compiler for nodes which opt for automatic composition. It works by inserting a `ComposeNode`
/// into the proto graph, which does the job of calling the upstream node and feeding its output into the downstream node's first input.
/// That first input is typically used by manual composition nodes as the call argument, but for automatic composition nodes,
/// that first input becomes the input data from the upstream node passed in by the `ComposeNode`.
///
/// Through automatic composition, the upstream node providing the first input for a proto node is evaluated before the proto node itself is run.
/// (That first input is usually the call argument when manual composition is used.)
/// - Abstract example: upstream node `G` is evaluated and its data feeds into the first input of downstream node `F`,
/// just like function composition where function `G` is evaluated and its result is fed into function `F`.
/// - Concrete example: a node that takes an image as its first input will get that image data from an upstream node that produces image output data and is evaluated first before being fed downstream.
///
/// This is achieved by automatically inserting `ComposeNode`s, which run the first node with the overall input and then feed the resulting output into the second node.
/// The `ComposeNode` is basically a function composition operator: the parentheses in `F(G(x))` or circle math operator in `(F ∘ G)(x)`.
/// For flexibility, instead of being a language construct, Graphene splits out composition itself as its own low-level node so that behavior can be overridden.
/// The `ComposeNode`s are then inserted during the graph rewriting step for nodes that don't opt out with `manual_composition`.
/// Instead of node `G` feeding into node `F` feeding as the result back to the caller,
/// the graph is rewritten so nodes `G` and `F` both feed as lambdas into the inputs of a `ComposeNode` which calls `F(G(input))` and returns the result to the caller.
///
/// A node's manual composition input represents an input that is not resolved through graph rewriting with a `ComposeNode`,
/// and is instead just passed in when evaluating this node within the borrow tree.
/// This is similar to having the first input be a `NodeInput::Network` after the graph flattening.
///
/// ## Example Use Case: CacheNode
///
/// The `CacheNode` is a pass-through node on cache miss, but on cache hit it needs to avoid evaluating the upstream node and instead just return the cached value.
///
/// First, let's consider what that would look like using the default composition flow if the `CacheNode` instead just always acted as a pass-through (akin to a cache that always misses):
///
/// ```text
/// ┌───────────────┐ ┌───────────────┐ ┌───────────────┐
/// │ │◄───┤ │◄───┤ │◄─── EVAL (START)
/// │ G │ │PassThroughNode│ │ F │
/// │ ├───►│ ├───►│ │───► RESULT (END)
/// └───────────────┘ └───────────────┘ └───────────────┘
/// ```
///
/// This acts like the function call `F(PassThroughNode(G(input)))` when evaluating `F` with some `input`: `F.eval(input)`.
/// - The diagram's upper track of arrows represents the flow of building up the call stack:
/// since `F` is the output it is encountered first but deferred to its upstream caller `PassThroughNode` and that is once again deferred to its upstream caller `G`.
/// - The diagram's lower track of arrows represents the flow of evaluating the call stack:
/// `G` is evaluated first, then `PassThroughNode` is evaluated with the result of `G`, and finally `F` is evaluated with the result of `PassThroughNode`.
///
/// With the default composition flow (no manual composition), `ComposeNode`s would be automatically inserted during the graph rewriting step like this:
///
/// ```text
/// ┌───────────────┐
/// │ │◄─── EVAL (START)
/// │ ComposeNode │
/// ┌───────────────┐ │ ├───► RESULT (END)
/// │ │◄─┐ ├───────────────┤
/// │ G │ └─┤ │
/// │ ├─┐ │ First │
/// └───────────────┘ └─►│ │
/// ┌───────────────┐ ├───────────────┤
/// │ │◄───┤ │
/// │ ComposeNode │ │ Second │
/// ┌───────────────┐ │ ├───►│ │
/// │ │◄─┐ ├───────────────┤ └───────────────┘
/// │PassThroughNode│ └─┤ │
/// │ ├─┐ │ First │
/// └───────────────┘ └─►│ │
/// ┌───────────────┐ ├───────────────┤
/// | │◄───┤ │
/// │ F │ │ Second │
/// │ ├───►│ │
/// └───────────────┘ └───────────────┘
/// ```
///
/// Now let's swap back from the `PassThroughNode` to the `CacheNode` to make caching actually work.
/// It needs to override the default composition flow so that `G` is not automatically evaluated when the cache is hit.
/// We need to give the `CacheNode` more manual control over the order of execution.
/// So the `CacheNode` opts into manual composition and, instead of deferring to its upstream caller, it consumes the input directly:
///
/// ```text
/// ┌───────────────┐ ┌───────────────┐
/// │ │◄───┤ │◄─── EVAL (START)
/// │ CacheNode │ │ F │
/// │ ├───►│ │───► RESULT (END)
/// ┌───────────────┐ ├───────────────┤ └───────────────┘
/// │ │◄───┤ │
/// │ G │ │ Cached Data │
/// │ ├───►│ │
/// └───────────────┘ └───────────────┘
/// ```
///
/// Now, the call from `F` directly reaches the `CacheNode` and the `CacheNode` can decide whether to call `G.eval(input_from_f)`
/// in the event of a cache miss or just return the cached data in the event of a cache hit.
pub manual_composition: Option<Type>,
// A nested document network or a proto-node identifier.
pub implementation: DocumentNodeImplementation,
/// Represents the eye icon for hiding/showing the node in the graph UI. When hidden, a node gets replaced with an identity node during the graph flattening step.
#[serde(default = "return_true")]
pub visible: bool,
/// When two different proto nodes hash to the same value (e.g. two value nodes each containing `2_u32` or two multiply nodes that have the same node IDs as input), the duplicates are removed.
/// See [`ProtoNetwork::generate_stable_node_ids`] for details.
/// However sometimes this is not desirable, for example in the case of a [`graphene_core::memo::MonitorNode`] that needs to be accessed outside of the graph.
#[serde(default)]
pub skip_deduplication: bool,
/// The path to this node and its inputs and outputs as of when [`NodeNetwork::generate_node_paths`] was called.
#[serde(skip)]
pub original_location: OriginalLocation,
}
/// Represents the original location of a node input/output when [`NodeNetwork::generate_node_paths`] was called, allowing the types and errors to be derived.
#[derive(Clone, Debug, PartialEq, Eq, Hash, DynAny, serde::Serialize, serde::Deserialize)]
pub struct Source {
pub node: Vec<NodeId>,
pub index: usize,
}
/// The path to this node and its inputs and outputs as of when [`NodeNetwork::generate_node_paths`] was called.
#[derive(Clone, Debug, PartialEq, Eq, DynAny, Default, serde::Serialize, serde::Deserialize)]
#[non_exhaustive]
pub struct OriginalLocation {
/// The original location to the document node - e.g. [grandparent_id, parent_id, node_id].
pub path: Option<Vec<NodeId>>,
/// Each document input source maps to one proto node input (however one proto node input may come from several sources)
pub inputs_source: HashMap<Source, usize>,
/// List of nodes which depend on this node
pub dependants: Vec<Vec<NodeId>>,
/// A list of flags indicating whether the input is exposed in the UI
pub inputs_exposed: Vec<bool>,
/// Skipping inputs is useful for the manual composition thing - whereby a hidden `Footprint` input is added as the first input.
pub skip_inputs: usize,
}
impl Default for DocumentNode {
fn default() -> Self {
Self {
inputs: Default::default(),
manual_composition: Default::default(),
implementation: Default::default(),
visible: true,
skip_deduplication: Default::default(),
original_location: OriginalLocation::default(),
}
}
}
impl Hash for OriginalLocation {
fn hash<H: Hasher>(&self, state: &mut H) {
self.path.hash(state);
self.inputs_source.iter().for_each(|val| val.hash(state));
self.inputs_exposed.hash(state);
self.skip_inputs.hash(state);
}
}
impl OriginalLocation {
pub fn inputs(&self, index: usize) -> impl Iterator<Item = Source> + '_ {
[(index >= self.skip_inputs).then(|| Source {
node: self.path.clone().unwrap_or_default(),
index: self.inputs_exposed.iter().take(index - self.skip_inputs).filter(|&&exposed| exposed).count(),
})]
.into_iter()
.flatten()
.chain(self.inputs_source.iter().filter(move |x| *x.1 == index).map(|(source, _)| source.clone()))
}
}
impl DocumentNode {
/// Locate the input that is a [`NodeInput::Network`] at index `offset` and replace it with a [`NodeInput::Node`].
pub fn populate_first_network_input(&mut self, node_id: NodeId, output_index: usize, offset: usize, lambda: bool, source: impl Iterator<Item = Source>, skip: usize) {
let (index, _) = self
.inputs
.iter()
.enumerate()
.nth(offset)
.unwrap_or_else(|| panic!("no network input found for {self:#?} and offset: {offset}"));
self.inputs[index] = NodeInput::Node { node_id, output_index, lambda };
let input_source = &mut self.original_location.inputs_source;
for source in source {
input_source.insert(source, (index + self.original_location.skip_inputs).saturating_sub(skip));
}
}
fn resolve_proto_node(mut self) -> ProtoNode {
assert!(!self.inputs.is_empty() || self.manual_composition.is_some(), "Resolving document node {self:#?} with no inputs");
let DocumentNodeImplementation::ProtoNode(identifier) = self.implementation else {
unreachable!("tried to resolve not flattened node on resolved node {self:?}");
};
let (input, mut args) = if let Some(ty) = self.manual_composition {
(ProtoNodeInput::ManualComposition(ty), ConstructionArgs::Nodes(vec![]))
} else {
let first = self.inputs.remove(0);
match first {
NodeInput::Value { tagged_value, .. } => {
assert_eq!(self.inputs.len(), 0, "A value node cannot have any inputs. Current inputs: {:?}", self.inputs);
(ProtoNodeInput::ManualComposition(concrete!(graphene_core::Context<'static>)), ConstructionArgs::Value(tagged_value))
}
NodeInput::Node { node_id, output_index, lambda } => {
assert_eq!(output_index, 0, "Outputs should be flattened before converting to proto node");
let node = if lambda { ProtoNodeInput::NodeLambda(node_id) } else { ProtoNodeInput::Node(node_id) };
(node, ConstructionArgs::Nodes(vec![]))
}
NodeInput::Network { import_type, .. } => (ProtoNodeInput::ManualComposition(import_type), ConstructionArgs::Nodes(vec![])),
NodeInput::Inline(inline) => (ProtoNodeInput::None, ConstructionArgs::Inline(inline)),
NodeInput::Scope(_) => unreachable!("Scope input was not resolved"),
NodeInput::Reflection(_) => unreachable!("Reflection input was not resolved"),
}
};
assert!(!self.inputs.iter().any(|input| matches!(input, NodeInput::Network { .. })), "received non-resolved input");
assert!(
!self.inputs.iter().any(|input| matches!(input, NodeInput::Value { .. })),
"received value as input. inputs: {:#?}, construction_args: {:#?}",
self.inputs,
args
);
// If we have one input of the type inline, set it as the construction args
if let &[NodeInput::Inline(ref inline)] = self.inputs.as_slice() {
args = ConstructionArgs::Inline(inline.clone());
}
if let ConstructionArgs::Nodes(nodes) = &mut args {
nodes.extend(self.inputs.iter().map(|input| match input {
NodeInput::Node { node_id, lambda, .. } => (*node_id, *lambda),
_ => unreachable!(),
}));
}
ProtoNode {
identifier,
input,
construction_args: args,
original_location: self.original_location,
skip_deduplication: self.skip_deduplication,
}
}
}
/// Represents the possible inputs to a node.
#[derive(Debug, Clone, PartialEq, Hash, DynAny, serde::Serialize, serde::Deserialize)]
pub enum NodeInput {
/// A reference to another node in the same network from which this node can receive its input.
Node { node_id: NodeId, output_index: usize, lambda: bool },
/// A hardcoded value that can't change after the graph is compiled. Gets converted into a value node during graph compilation.
Value { tagged_value: MemoHash<TaggedValue>, exposed: bool },
// TODO: Remove import_type and get type from parent node input
/// Input that is provided by the parent network to this document node, instead of from a hardcoded value or another node within the same network.
Network { import_type: Type, import_index: usize },
/// Input that is extracted from the parent scopes the node resides in. The string argument is the key.
Scope(Cow<'static, str>),
/// Input that is extracted from the parent scopes the node resides in. The string argument is the key.
Reflection(DocumentNodeMetadata),
/// A Rust source code string. Allows us to insert literal Rust code. Only used for GPU compilation.
/// We can use this whenever we spin up Rustc. Sort of like inline assembly, but because our language is Rust, it acts as inline Rust.
Inline(InlineRust),
}
#[derive(Debug, Clone, PartialEq, Hash, DynAny, serde::Serialize, serde::Deserialize)]
pub struct InlineRust {
pub expr: String,
pub ty: Type,
}
impl InlineRust {
pub fn new(expr: String, ty: Type) -> Self {
Self { expr, ty }
}
}
#[derive(Debug, Clone, PartialEq, Hash, DynAny, serde::Serialize, serde::Deserialize)]
pub enum DocumentNodeMetadata {
DocumentNodePath,
}
impl NodeInput {
pub const fn node(node_id: NodeId, output_index: usize) -> Self {
Self::Node { node_id, output_index, lambda: false }
}
pub const fn lambda(node_id: NodeId, output_index: usize) -> Self {
Self::Node { node_id, output_index, lambda: true }
}
pub fn value(tagged_value: TaggedValue, exposed: bool) -> Self {
let tagged_value = tagged_value.into();
Self::Value { tagged_value, exposed }
}
pub const fn network(import_type: Type, import_index: usize) -> Self {
Self::Network { import_type, import_index }
}
pub fn scope(key: impl Into<Cow<'static, str>>) -> Self {
Self::Scope(key.into())
}
fn map_ids(&mut self, f: impl Fn(NodeId) -> NodeId) {
if let &mut NodeInput::Node { node_id, output_index, lambda } = self {
*self = NodeInput::Node {
node_id: f(node_id),
output_index,
lambda,
}
}
}
pub fn is_exposed(&self) -> bool {
match self {
NodeInput::Node { .. } => true,
NodeInput::Value { exposed, .. } => *exposed,
NodeInput::Network { .. } => true,
NodeInput::Inline(_) => false,
NodeInput::Scope(_) => false,
NodeInput::Reflection(_) => false,
}
}
pub fn ty(&self) -> Type {
match self {
NodeInput::Node { .. } => unreachable!("ty() called on NodeInput::Node"),
NodeInput::Value { tagged_value, .. } => tagged_value.ty(),
NodeInput::Network { import_type, .. } => import_type.clone(),
NodeInput::Inline(_) => panic!("ty() called on NodeInput::Inline"),
NodeInput::Scope(_) => unreachable!("ty() called on NodeInput::Scope"),
NodeInput::Reflection(_) => concrete!(Metadata),
}
}
pub fn as_value(&self) -> Option<&TaggedValue> {
if let NodeInput::Value { tagged_value, .. } = self { Some(tagged_value) } else { None }
}
pub fn as_value_mut(&mut self) -> Option<MemoHashGuard<'_, TaggedValue>> {
if let NodeInput::Value { tagged_value, .. } = self { Some(tagged_value.inner_mut()) } else { None }
}
pub fn as_non_exposed_value(&self) -> Option<&TaggedValue> {
if let NodeInput::Value { tagged_value, exposed: false } = self { Some(tagged_value) } else { None }
}
pub fn as_node(&self) -> Option<NodeId> {
if let NodeInput::Node { node_id, .. } = self { Some(*node_id) } else { None }
}
}
#[derive(Clone, Debug, DynAny, serde::Serialize, serde::Deserialize)]
/// Represents the implementation of a node, which can be a nested [`NodeNetwork`], a proto [`ProtoNodeIdentifier`], or `Extract`.
pub enum OldDocumentNodeImplementation {
/// This describes a (document) node built out of a subgraph of other (document) nodes.
///
/// A nested [`NodeNetwork`] that is flattened by the [`NodeNetwork::flatten`] function.
Network(OldNodeNetwork),
/// This describes a (document) node implemented as a proto node.
///
/// A proto node identifier which can be found in `node_registry.rs`.
#[serde(alias = "Unresolved")] // TODO: Eventually remove this alias document upgrade code
ProtoNode(ProtoNodeIdentifier),
/// The Extract variant is a tag which tells the compilation process to do something special. It invokes language-level functionality built for use by the ExtractNode to enable metaprogramming.
/// When the ExtractNode is compiled, it gets replaced by a value node containing a representation of the source code for the function/lambda of the document node that's fed into the ExtractNode
/// (but only that one document node, not upstream nodes).
///
/// This is explained in more detail here: <https://www.youtube.com/watch?v=72KJa3jQClo>
///
/// Currently we use it for GPU execution, where a node has to get "extracted" to its source code representation and stored as a value that can be given to the GpuCompiler node at runtime
/// (to become a compute shader). Future use could involve the addition of an InjectNode to convert the source code form back into an executable node, enabling metaprogramming in the node graph.
/// We would use an assortment of nodes that operate on Graphene source code (just data, no different from any other data flowing through the graph) to make graph transformations.
///
/// We use this for dealing with macros in a syntactic way of modifying the node graph from within the graph itself. Just like we often deal with lambdas to represent a whole group of
/// operations/code/logic, this allows us to basically deal with a lambda at a meta/source-code level, because we need to pass the GPU SPIR-V compiler the source code for a lambda,
/// not the executable logic of a lambda.
///
/// This is analogous to how Rust macros operate at the level of source code, not executable code. When we speak of source code, that represents Graphene's source code in the form of a
/// DocumentNode network, not the text form of Rust's source code. (Analogous to the token stream/AST of a Rust macro.)
///
/// `DocumentNode`s with a `DocumentNodeImplementation::Extract` are converted into a `ClonedNode` that returns the `DocumentNode` specified by the single `NodeInput::Node`. The referenced node
/// (specified by the single `NodeInput::Node`) is removed from the network, and any `NodeInput::Node`s used by the referenced node are replaced with a generically typed network input.
Extract,
}
#[derive(Clone, Debug, PartialEq, Hash, DynAny, serde::Serialize, serde::Deserialize)]
/// Represents the implementation of a node, which can be a nested [`NodeNetwork`], a proto [`ProtoNodeIdentifier`], or `Extract`.
pub enum DocumentNodeImplementation {
/// This describes a (document) node built out of a subgraph of other (document) nodes.
///
/// A nested [`NodeNetwork`] that is flattened by the [`NodeNetwork::flatten`] function.
Network(NodeNetwork),
/// This describes a (document) node implemented as a proto node.
///
/// A proto node identifier which can be found in `node_registry.rs`.
#[serde(alias = "Unresolved")] // TODO: Eventually remove this alias document upgrade code
ProtoNode(ProtoNodeIdentifier),
/// The Extract variant is a tag which tells the compilation process to do something special. It invokes language-level functionality built for use by the ExtractNode to enable metaprogramming.
/// When the ExtractNode is compiled, it gets replaced by a value node containing a representation of the source code for the function/lambda of the document node that's fed into the ExtractNode
/// (but only that one document node, not upstream nodes).
///
/// This is explained in more detail here: <https://www.youtube.com/watch?v=72KJa3jQClo>
///
/// Currently we use it for GPU execution, where a node has to get "extracted" to its source code representation and stored as a value that can be given to the GpuCompiler node at runtime
/// (to become a compute shader). Future use could involve the addition of an InjectNode to convert the source code form back into an executable node, enabling metaprogramming in the node graph.
/// We would use an assortment of nodes that operate on Graphene source code (just data, no different from any other data flowing through the graph) to make graph transformations.
///
/// We use this for dealing with macros in a syntactic way of modifying the node graph from within the graph itself. Just like we often deal with lambdas to represent a whole group of
/// operations/code/logic, this allows us to basically deal with a lambda at a meta/source-code level, because we need to pass the GPU SPIR-V compiler the source code for a lambda,
/// not the executable logic of a lambda.
///
/// This is analogous to how Rust macros operate at the level of source code, not executable code. When we speak of source code, that represents Graphene's source code in the form of a
/// DocumentNode network, not the text form of Rust's source code. (Analogous to the token stream/AST of a Rust macro.)
///
/// `DocumentNode`s with a `DocumentNodeImplementation::Extract` are converted into a `ClonedNode` that returns the `DocumentNode` specified by the single `NodeInput::Node`. The referenced node
/// (specified by the single `NodeInput::Node`) is removed from the network, and any `NodeInput::Node`s used by the referenced node are replaced with a generically typed network input.
Extract,
}
impl Default for DocumentNodeImplementation {
fn default() -> Self {
Self::ProtoNode(ProtoNodeIdentifier::new("graphene_core::ops::IdentityNode"))
}
}
impl DocumentNodeImplementation {
pub fn get_network(&self) -> Option<&NodeNetwork> {
match self {
DocumentNodeImplementation::Network(n) => Some(n),
_ => None,
}
}
pub fn get_network_mut(&mut self) -> Option<&mut NodeNetwork> {
match self {
DocumentNodeImplementation::Network(n) => Some(n),
_ => None,
}
}
pub fn get_proto_node(&self) -> Option<&ProtoNodeIdentifier> {
match self {
DocumentNodeImplementation::ProtoNode(p) => Some(p),
_ => None,
}
}
pub const fn proto(name: &'static str) -> Self {
Self::ProtoNode(ProtoNodeIdentifier::new(name))
}
pub fn output_count(&self) -> usize {
match self {
DocumentNodeImplementation::Network(network) => network.exports.len(),
_ => 1,
}
}
}
// TODO: Eventually remove this document upgrade code
#[derive(Debug, serde::Deserialize)]
#[serde(untagged)]
pub enum NodeExportVersions {
OldNodeInput(NodeOutput),
NodeInput(NodeInput),
}
// TODO: Eventually remove this document upgrade code
#[derive(Debug, serde::Deserialize)]
pub struct NodeOutput {
pub node_id: NodeId,
pub node_output_index: usize,
}
// TODO: Eventually remove this document upgrade code
fn deserialize_exports<'de, D>(deserializer: D) -> Result<Vec<NodeInput>, D::Error>
where
D: serde::Deserializer<'de>,
{
use serde::Deserialize;
let node_input_versions = Vec::<NodeExportVersions>::deserialize(deserializer)?;
// Convert Vec<NodeOutput> to Vec<NodeInput>
let inputs = node_input_versions
.into_iter()
.map(|node_input_version| {
let node_output = match node_input_version {
NodeExportVersions::OldNodeInput(node_output) => node_output,
NodeExportVersions::NodeInput(node_input) => return node_input,
};
NodeInput::node(node_output.node_id, node_output.node_output_index)
})
.collect();
Ok(inputs)
}
/// An instance of a [`DocumentNodeDefinition`] that has been instantiated in a [`NodeNetwork`].
/// Currently, when an instance is made, it lives all on its own without any lasting connection to the definition.
/// But we will want to change it in the future so it merely references its definition.
#[derive(Clone, Debug, DynAny, serde::Serialize, serde::Deserialize)]
pub struct OldDocumentNode {
/// A name chosen by the user for this instance of the node. Empty indicates no given name, in which case the node definition's name is displayed to the user in italics.
/// Ensure the click target in the encapsulating network is updated when this is modified by using network.update_click_target(node_id).
#[serde(default)]
pub alias: String,
// TODO: Replace this name with a reference to the [`DocumentNodeDefinition`] node definition to use the name from there instead.
/// The name of the node definition, as originally set by [`DocumentNodeDefinition`], used to display in the UI and to display the appropriate properties.
#[serde(deserialize_with = "migrate_layer_to_merge")]
pub name: String,
/// The inputs to a node, which are either:
/// - From other nodes within this graph [`NodeInput::Node`],
/// - A constant value [`NodeInput::Value`],
/// - A [`NodeInput::Network`] which specifies that this input is from outside the graph, which is resolved in the graph flattening step in the case of nested networks.
///
/// In the root network, it is resolved when evaluating the borrow tree.
/// Ensure the click target in the encapsulating network is updated when the inputs cause the node shape to change (currently only when exposing/hiding an input) by using network.update_click_target(node_id).
#[cfg_attr(target_arch = "wasm32", serde(alias = "outputs"))]
pub inputs: Vec<NodeInput>,
pub manual_composition: Option<Type>,
// TODO: Remove once this references its definition instead (see above TODO).
/// Indicates to the UI if a primary output should be drawn for this node.
/// True for most nodes, but the Split Channels node is an example of a node that has multiple secondary outputs but no primary output.
#[serde(default = "return_true")]
pub has_primary_output: bool,
// A nested document network or a proto-node identifier.
pub implementation: OldDocumentNodeImplementation,
/// User chosen state for displaying this as a left-to-right node or bottom-to-top layer. Ensure the click target in the encapsulating network is updated when the node changes to a layer by using network.update_click_target(node_id).
#[serde(default)]
pub is_layer: bool,
/// Represents the eye icon for hiding/showing the node in the graph UI. When hidden, a node gets replaced with an identity node during the graph flattening step.
#[serde(default = "return_true")]
pub visible: bool,
/// Represents the lock icon for locking/unlocking the node in the graph UI. When locked, a node cannot be moved in the graph UI.
#[serde(default)]
pub locked: bool,
/// Metadata about the node including its position in the graph UI. Ensure the click target in the encapsulating network is updated when the node moves by using network.update_click_target(node_id).
pub metadata: OldDocumentNodeMetadata,
/// When two different proto nodes hash to the same value (e.g. two value nodes each containing `2_u32` or two multiply nodes that have the same node IDs as input), the duplicates are removed.
/// See [`ProtoNetwork::generate_stable_node_ids`] for details.
/// However sometimes this is not desirable, for example in the case of a [`graphene_core::memo::MonitorNode`] that needs to be accessed outside of the graph.
#[serde(default)]
pub skip_deduplication: bool,
/// The path to this node and its inputs and outputs as of when [`NodeNetwork::generate_node_paths`] was called.
#[serde(skip)]
pub original_location: OriginalLocation,
}
// TODO: Eventually remove this document upgrade code
#[derive(Clone, Debug, PartialEq, Default, specta::Type, Hash, DynAny, serde::Serialize, serde::Deserialize)]
/// Metadata about the node including its position in the graph UI
pub struct OldDocumentNodeMetadata {
pub position: IVec2,
}
// TODO: Eventually remove this document upgrade code
#[derive(Clone, Copy, Debug, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
/// Root Node is the "default" export for a node network. Used by document metadata, displaying UI-only "Export" node, and for restoring the default preview node.
pub struct OldRootNode {
pub id: NodeId,
pub output_index: usize,
}
// TODO: Eventually remove this document upgrade code
#[derive(PartialEq, Debug, Clone, Hash, Default, serde::Serialize, serde::Deserialize)]
pub enum OldPreviewing {
/// If there is a node to restore the connection to the export for, then it is stored in the option.
/// Otherwise, nothing gets restored and the primary export is disconnected.
Yes { root_node_to_restore: Option<OldRootNode> },
#[default]
No,
}
// TODO: Eventually remove this document upgrade code
#[derive(Clone, Debug, DynAny, serde::Serialize, serde::Deserialize)]
/// A network (subgraph) of nodes containing each [`DocumentNode`] and its ID, as well as list mapping each export to its connected node, or a value if disconnected
pub struct OldNodeNetwork {
/// The list of data outputs that are exported from this network to the parent network.
/// Each export is a reference to a node within this network, paired with its output index, that is the source of the network's exported data.
#[serde(alias = "outputs", deserialize_with = "deserialize_exports")] // TODO: Eventually remove this alias document upgrade code
pub exports: Vec<NodeInput>,
/// The list of all nodes in this network.
//cfg_attr(feature = "serde", #[serde(serialize_with = "graphene_core::vector::serialize_hashmap", deserialize_with = "graphene_core::vector::deserialize_hashmap"))]
pub nodes: HashMap<NodeId, OldDocumentNode>,
/// Indicates whether the network is currently rendered with a particular node that is previewed, and if so, which connection should be restored when the preview ends.
#[serde(default)]
pub previewing: OldPreviewing,
/// Temporary fields to store metadata for "Import"/"Export" UI-only nodes, eventually will be replaced with lines leading to edges
#[serde(default = "default_import_metadata")]
pub imports_metadata: (NodeId, IVec2),
#[serde(default = "default_export_metadata")]
pub exports_metadata: (NodeId, IVec2),
/// A network may expose nodes as constants which can by used by other nodes using a `NodeInput::Scope(key)`.
#[serde(default)]
//cfg_attr(feature = "serde", #[serde(serialize_with = "graphene_core::vector::serialize_hashmap", deserialize_with = "graphene_core::vector::deserialize_hashmap"))]
pub scope_injections: HashMap<String, (NodeId, Type)>,
}
// TODO: Eventually remove this document upgrade code
fn migrate_layer_to_merge<'de, D: serde::Deserializer<'de>>(deserializer: D) -> Result<String, D::Error> {
let mut s: String = serde::Deserialize::deserialize(deserializer)?;
if s == "Layer" {
s = "Merge".to_string();
}
Ok(s)
}
// TODO: Eventually remove this document upgrade code
fn default_import_metadata() -> (NodeId, IVec2) {
(NodeId::new(), IVec2::new(-25, -4))
}
// TODO: Eventually remove this document upgrade code
fn default_export_metadata() -> (NodeId, IVec2) {
(NodeId::new(), IVec2::new(8, -4))
}
#[derive(Clone, Default, Debug, DynAny, serde::Serialize, serde::Deserialize)]
/// A network (subgraph) of nodes containing each [`DocumentNode`] and its ID, as well as list mapping each export to its connected node, or a value if disconnected
pub struct NodeNetwork {
/// The list of data outputs that are exported from this network to the parent network.
/// Each export is a reference to a node within this network, paired with its output index, that is the source of the network's exported data.
// TODO: Eventually remove this alias document upgrade code
#[cfg_attr(target_arch = "wasm32", serde(alias = "outputs", deserialize_with = "deserialize_exports"))]
pub exports: Vec<NodeInput>,
// TODO: Instead of storing import types in each NodeInput::Network connection, the types are stored here. This is similar to how types need to be defined for parameters when creating a function in Rust.
// pub import_types: Vec<Type>,
/// The list of all nodes in this network.
#[serde(serialize_with = "graphene_core::vector::serialize_hashmap", deserialize_with = "graphene_core::vector::deserialize_hashmap")]
pub nodes: FxHashMap<NodeId, DocumentNode>,
/// A network may expose nodes as constants which can by used by other nodes using a `NodeInput::Scope(key)`.
#[serde(default)]
#[serde(serialize_with = "graphene_core::vector::serialize_hashmap", deserialize_with = "graphene_core::vector::deserialize_hashmap")]
pub scope_injections: FxHashMap<String, (NodeId, Type)>,
#[serde(skip)]
pub generated: bool,
}
impl Hash for NodeNetwork {
fn hash<H: Hasher>(&self, state: &mut H) {
self.exports.hash(state);
let mut nodes: Vec<_> = self.nodes.iter().collect();
nodes.sort_by_key(|(id, _)| *id);
for (id, node) in nodes {
id.hash(state);
node.hash(state);
}
}
}
impl PartialEq for NodeNetwork {
fn eq(&self, other: &Self) -> bool {
self.exports == other.exports
}
}
/// Graph modification functions
impl NodeNetwork {
pub fn current_hash(&self) -> u64 {
let mut hasher = DefaultHasher::new();
self.hash(&mut hasher);
hasher.finish()
}
pub fn value_network(node: DocumentNode) -> Self {
Self {
exports: vec![NodeInput::node(NodeId(0), 0)],
nodes: [(NodeId(0), node)].into_iter().collect(),
..Default::default()
}
}
/// Get the nested network given by the path of node ids
pub fn nested_network(&self, nested_path: &[NodeId]) -> Option<&Self> {
let mut network = Some(self);
for segment in nested_path {
network = network.and_then(|network| network.nodes.get(segment)).and_then(|node| node.implementation.get_network());
}
network
}
/// Get the mutable nested network given by the path of node ids
pub fn nested_network_mut(&mut self, nested_path: &[NodeId]) -> Option<&mut Self> {
let mut network = Some(self);
for segment in nested_path {
network = network.and_then(|network| network.nodes.get_mut(segment)).and_then(|node| node.implementation.get_network_mut());
}
network
}
/// Is the node being used directly as an output?
pub fn outputs_contain(&self, node_id_to_check: NodeId) -> bool {
self.exports
.iter()
.any(|output| if let NodeInput::Node { node_id, .. } = output { *node_id == node_id_to_check } else { false })
}
/// Check there are no cycles in the graph (this should never happen).
pub fn is_acyclic(&self) -> bool {
let mut dependencies: HashMap<NodeId, Vec<NodeId>> = HashMap::new();
for (node_id, node) in &self.nodes {
dependencies.insert(
*node_id,
node.inputs
.iter()
.filter_map(|input| if let NodeInput::Node { node_id, .. } = input { Some(*node_id) } else { None })
.collect(),
);
}
while !dependencies.is_empty() {
let Some((&disconnected, _)) = dependencies.iter().find(|(_, l)| l.is_empty()) else {
error!("Dependencies {dependencies:?}");
return false;
};
dependencies.remove(&disconnected);
for connections in dependencies.values_mut() {
connections.retain(|&id| id != disconnected);
}
}
true
}
}
/// Functions for compiling the network
impl NodeNetwork {
/// Replace all references in the graph of a node ID with a new node ID defined by the function `f`.
pub fn map_ids(&mut self, f: impl Fn(NodeId) -> NodeId + Copy) {
self.exports.iter_mut().for_each(|output| {
if let NodeInput::Node { node_id, .. } = output {
*node_id = f(*node_id)
}
});
self.scope_injections.values_mut().for_each(|(id, _ty)| *id = f(*id));
let nodes = std::mem::take(&mut self.nodes);
self.nodes = nodes
.into_iter()
.map(|(id, mut node)| {
node.inputs.iter_mut().for_each(|input| input.map_ids(f));
node.original_location.dependants.iter_mut().for_each(|deps| deps.iter_mut().for_each(|id| *id = f(*id)));
(f(id), node)
})
.collect();
}
/// Populate the [`DocumentNode::path`], which stores the location of the document node to allow for matching the resulting proto nodes to the document node for the purposes of typing and finding monitor nodes.
pub fn generate_node_paths(&mut self, prefix: &[NodeId]) {
for (node_id, node) in &mut self.nodes {
let mut new_path = prefix.to_vec();
if !self.generated {
new_path.push(*node_id);
}
if let DocumentNodeImplementation::Network(network) = &mut node.implementation {
network.generate_node_paths(new_path.as_slice());
}
if node.original_location.path.is_some() {
log::warn!("Attempting to overwrite node path");
} else {
node.original_location = OriginalLocation {
path: Some(new_path),
inputs_exposed: node.inputs.iter().map(|input| input.is_exposed()).collect(),
skip_inputs: if node.manual_composition.is_some() { 1 } else { 0 },
dependants: (0..node.implementation.output_count()).map(|_| Vec::new()).collect(),
..Default::default()
};
}
}
}
pub fn populate_dependants(&mut self) {
let mut dep_changes = Vec::new();
for (node_id, node) in &mut self.nodes {
let len = node.original_location.dependants.len();
node.original_location.dependants.extend(vec![vec![]; (node.implementation.output_count()).max(len) - len]);
for input in &node.inputs {
if let NodeInput::Node { node_id: dep_id, output_index, .. } = input {
dep_changes.push((*dep_id, *output_index, *node_id));
}
}
}
// println!("{:#?}", self.nodes.get(&NodeId(1)));
for (dep_id, output_index, node_id) in dep_changes {
let node = self.nodes.get_mut(&dep_id).expect("Encountered invalid node id");
let len = node.original_location.dependants.len();
// One must be added to the index to find the length because indexing in rust starts from 0.
node.original_location.dependants.extend(vec![vec![]; (output_index + 1).max(len) - len]);
// println!("{node_id} {output_index} {}", node.implementation.output_count());
node.original_location.dependants[output_index].push(node_id);
}
}
/// Replace all references in any node of `old_input` with `new_input`
fn replace_node_inputs(&mut self, node_id: NodeId, old_input: (NodeId, usize), new_input: (NodeId, usize)) {
let Some(node) = self.nodes.get_mut(&node_id) else { return };
node.inputs.iter_mut().for_each(|input| {
if let NodeInput::Node { node_id: input_id, output_index, .. } = input {
if (*input_id, *output_index) == old_input {
(*input_id, *output_index) = new_input;
}
}
});
}
/// Replace all references in any node of `old_output` with `new_output`
fn replace_network_outputs(&mut self, old_output: NodeInput, new_output: NodeInput) {
for output in self.exports.iter_mut() {
if *output == old_output {
*output = new_output.clone();
}
}
}
/// Removes unused nodes from the graph. Returns a list of booleans which represent if each of the inputs have been retained.
pub fn remove_dead_nodes(&mut self, number_of_inputs: usize) -> Vec<bool> {
// Take all the nodes out of the nodes list
let mut old_nodes = std::mem::take(&mut self.nodes);
let mut stack = self
.exports
.iter()
.filter_map(|output| if let NodeInput::Node { node_id, .. } = output { Some(*node_id) } else { None })
.collect::<Vec<_>>();
while let Some(node_id) = stack.pop() {
let Some((node_id, mut document_node)) = old_nodes.remove_entry(&node_id) else {
continue;
};
// Remove dead nodes from child networks
if let DocumentNodeImplementation::Network(network) = &mut document_node.implementation {
// Remove inputs to the parent node if they have been removed from the child
let mut retain_inputs = network.remove_dead_nodes(document_node.inputs.len()).into_iter();
document_node.inputs.retain(|_| retain_inputs.next().unwrap_or(true))
}
// Visit all nodes that this node references
stack.extend(
document_node
.inputs
.iter()
.filter_map(|input| if let NodeInput::Node { node_id, .. } = input { Some(node_id) } else { None }),
);
// Add the node back to the list of nodes
self.nodes.insert(node_id, document_node);
}
// Check if inputs are used and store for return value
let mut are_inputs_used = vec![false; number_of_inputs];
for node in &self.nodes {
for node_input in &node.1.inputs {
if let NodeInput::Network { import_index, .. } = node_input {
if let Some(is_used) = are_inputs_used.get_mut(*import_index) {
*is_used = true;
}
}
}
}
are_inputs_used
}
pub fn resolve_scope_inputs(&mut self) {
for node in self.nodes.values_mut() {
for input in node.inputs.iter_mut() {
if let NodeInput::Scope(key) = input {
let (import_id, _ty) = self.scope_injections.get(key.as_ref()).expect("Tried to import a non existent key from scope");
// TODO use correct output index
*input = NodeInput::node(*import_id, 0);
}
}
}
}
/// Remove all nodes that contain [`DocumentNodeImplementation::Network`] by moving the nested nodes into the parent network.
pub fn flatten(&mut self, node_id: NodeId) {
self.flatten_with_fns(node_id, merge_ids, NodeId::new)
}
/// Remove all nodes that contain [`DocumentNodeImplementation::Network`] by moving the nested nodes into the parent network.
pub fn flatten_with_fns(&mut self, node_id: NodeId, map_ids: impl Fn(NodeId, NodeId) -> NodeId + Copy, gen_id: impl Fn() -> NodeId + Copy) {
let Some((id, mut node)) = self.nodes.remove_entry(&node_id) else {
warn!("The node which was supposed to be flattened does not exist in the network, id {node_id} network {self:#?}");
return;
};
// If the node is hidden, replace it with an identity node
let identity_node = DocumentNodeImplementation::ProtoNode("graphene_core::ops::IdentityNode".into());
if !node.visible && node.implementation != identity_node {
node.implementation = identity_node;
// Connect layer node to the graphic group below
node.inputs.drain(1..);
node.manual_composition = None;
self.nodes.insert(id, node);
return;
}
let path = node.original_location.path.clone().unwrap_or_default();
// Replace value inputs with dedicated value nodes
if node.implementation != DocumentNodeImplementation::ProtoNode("graphene_core::value::ClonedNode".into()) {
Self::replace_value_inputs_with_nodes(&mut node.inputs, &mut self.nodes, &path, gen_id, map_ids, id);
}
let DocumentNodeImplementation::Network(mut inner_network) = node.implementation else {
// If the node is not a network, it is a primitive node and can be inserted into the network as is.
assert!(!self.nodes.contains_key(&id), "Trying to insert a node into the network caused an id conflict");
self.nodes.insert(id, node);
return;
};
// Replace value and reflection imports with value nodes, added inside nested network
Self::replace_value_inputs_with_nodes(
&mut inner_network.exports,
&mut inner_network.nodes,
node.original_location.path.as_ref().unwrap_or(&vec![]),
gen_id,
map_ids,
id,
);
// Connect all network inputs to either the parent network nodes, or newly created value nodes for the parent node.
inner_network.map_ids(|inner_id| map_ids(id, inner_id));
inner_network.populate_dependants();
let new_nodes = inner_network.nodes.keys().cloned().collect::<Vec<_>>();
for (key, value) in inner_network.scope_injections.into_iter() {
match self.scope_injections.entry(key) {
std::collections::hash_map::Entry::Occupied(o) => {
log::warn!("Found duplicate scope injection for key {}, ignoring", o.key());
}
std::collections::hash_map::Entry::Vacant(v) => {
v.insert(value);
}
}
}
// Match the document node input and the inputs of the inner network
for (nested_node_id, mut nested_node) in inner_network.nodes.into_iter() {
for (nested_input_index, nested_input) in nested_node.clone().inputs.iter().enumerate() {
if let NodeInput::Network { import_index, .. } = nested_input {
let parent_input = node.inputs.get(*import_index).unwrap_or_else(|| panic!("Import index {} should always exist", import_index));
match *parent_input {
// If the input to self is a node, connect the corresponding output of the inner network to it
NodeInput::Node { node_id, output_index, lambda } => {
let skip = node.original_location.skip_inputs;
nested_node.populate_first_network_input(node_id, output_index, nested_input_index, lambda, node.original_location.inputs(*import_index), skip);
let input_node = self.nodes.get_mut(&node_id).unwrap_or_else(|| panic!("unable find input node {node_id:?}"));
input_node.original_location.dependants[output_index].push(nested_node_id);
}
NodeInput::Network { import_index, .. } => {
let parent_input_index = import_index;
let Some(NodeInput::Network { import_index, .. }) = nested_node.inputs.get_mut(nested_input_index) else {
log::error!("Nested node should have a network input");
continue;
};
*import_index = parent_input_index;
}
NodeInput::Value { .. } => unreachable!("Value inputs should have been replaced with value nodes"),
NodeInput::Inline(_) => (),
NodeInput::Scope(ref key) => {
let (import_id, _ty) = self.scope_injections.get(key.as_ref()).expect("Tried to import a non existent key from scope");
// TODO use correct output index
nested_node.inputs[nested_input_index] = NodeInput::node(*import_id, 0);
}
NodeInput::Reflection(_) => unreachable!("Reflection inputs should have been replaced with value nodes"),
}
}
}
self.nodes.insert(nested_node_id, nested_node);
}
// TODO: Add support for flattening exports that are NodeInput::Network (https://github.com/GraphiteEditor/Graphite/issues/1762)
// Connect all nodes that were previously connected to this node to the nodes of the inner network
for (i, export) in inner_network.exports.into_iter().enumerate() {
if let NodeInput::Node { node_id, output_index, .. } = &export {
for deps in &node.original_location.dependants {
for dep in deps {
self.replace_node_inputs(*dep, (id, i), (*node_id, *output_index));
}
}
if let Some(new_output_node) = self.nodes.get_mut(node_id) {
for dep in &node.original_location.dependants[i] {
new_output_node.original_location.dependants[*output_index].push(*dep);
}
}
}
self.replace_network_outputs(NodeInput::node(id, i), export);
}
for node_id in new_nodes {
self.flatten_with_fns(node_id, map_ids, gen_id);
}
}
#[inline(never)]
fn replace_value_inputs_with_nodes(
inputs: &mut [NodeInput],
collection: &mut FxHashMap<NodeId, DocumentNode>,
path: &[NodeId],
gen_id: impl Fn() -> NodeId + Copy,
map_ids: impl Fn(NodeId, NodeId) -> NodeId + Copy,
id: NodeId,
) {
// Replace value exports and imports with value nodes, added inside the nested network
for export in inputs {
let export: &mut NodeInput = export;
let previous_export = std::mem::replace(export, NodeInput::network(concrete!(()), 0));
let (tagged_value, exposed) = match previous_export {
NodeInput::Value { tagged_value, exposed } => (tagged_value, exposed),
NodeInput::Reflection(reflect) => match reflect {
DocumentNodeMetadata::DocumentNodePath => (TaggedValue::NodePath(path.to_vec()).into(), false),
},
previous_export => {
*export = previous_export;
continue;
}
};
let value_node_id = gen_id();
let merged_node_id = map_ids(id, value_node_id);
let mut original_location = OriginalLocation {
path: Some(path.to_vec()),
dependants: vec![vec![id]],
..Default::default()
};
if let Some(path) = &mut original_location.path {
path.push(value_node_id);
}
collection.insert(
merged_node_id,
DocumentNode {
inputs: vec![NodeInput::Value { tagged_value, exposed }],
implementation: DocumentNodeImplementation::ProtoNode("graphene_core::value::ClonedNode".into()),
original_location,
..Default::default()
},
);
*export = NodeInput::Node {
node_id: merged_node_id,
output_index: 0,
lambda: false,
};
}
}
// /// Locate the export that is a [`NodeInput::Network`] at index `offset` and replace it with a [`NodeInput::Node`].
// fn populate_first_network_export(&mut self, node: &mut DocumentNode, node_id: NodeId, output_index: usize, lambda: bool, export_index: usize, source: impl Iterator<Item = Source>, skip: usize) {
// self.exports[export_index] = NodeInput::Node { node_id, output_index, lambda };
// let input_source = &mut node.original_location.inputs_source;
// for source in source {
// input_source.insert(source, output_index + node.original_location.skip_inputs - skip);
// }
// }
fn remove_id_node(&mut self, id: NodeId) -> Result<(), String> {
let node = self.nodes.get(&id).ok_or_else(|| format!("Node with id {id} does not exist"))?.clone();
if let DocumentNodeImplementation::ProtoNode(ident) = &node.implementation {
if ident.name == "graphene_core::ops::IdentityNode" {
assert_eq!(node.inputs.len(), 1, "Id node has more than one input");
if let NodeInput::Node { node_id, output_index, .. } = node.inputs[0] {
let node_input_output_index = output_index;
// TODO fix
if let Some(input_node) = self.nodes.get_mut(&node_id) {
for &dep in &node.original_location.dependants[0] {
input_node.original_location.dependants[output_index].push(dep);
}
}
let input_node_id = node_id;
for output in self.nodes.values_mut() {
for (index, input) in output.inputs.iter_mut().enumerate() {
if let NodeInput::Node {
node_id: output_node_id,
output_index: output_output_index,
..
} = input
{
if *output_node_id == id {
*output_node_id = input_node_id;
*output_output_index = node_input_output_index;
let input_source = &mut output.original_location.inputs_source;
for source in node.original_location.inputs(index) {
input_source.insert(source, index + output.original_location.skip_inputs - node.original_location.skip_inputs);
}
}
}
}
for node_input in self.exports.iter_mut() {
if let NodeInput::Node { node_id, output_index, .. } = node_input {
if *node_id == id {
*node_id = input_node_id;
*output_index = node_input_output_index;
}
}
}
}
}
self.nodes.remove(&id);
}
}
Ok(())
}
/// Strips out any [`graphene_core::ops::IdentityNode`]s that are unnecessary.
pub fn remove_redundant_id_nodes(&mut self) {
let id_nodes = self
.nodes
.iter()
.filter(|(_, node)| {
matches!(&node.implementation, DocumentNodeImplementation::ProtoNode(ident) if ident == &ProtoNodeIdentifier::new("graphene_core::ops::IdentityNode"))
&& node.inputs.len() == 1
&& matches!(node.inputs[0], NodeInput::Node { .. })
})
.map(|(id, _)| *id)
.collect::<Vec<_>>();
for id in id_nodes {
if let Err(e) = self.remove_id_node(id) {
log::warn!("{e}")
}
}
}
/// Converts the `DocumentNode`s with a `DocumentNodeImplementation::Extract` into a `ClonedNode` that returns
/// the `DocumentNode` specified by the single `NodeInput::Node`.
/// The referenced node is removed from the network, and any `NodeInput::Node`s used by the referenced node are replaced with a generically typed network input.
pub fn resolve_extract_nodes(&mut self) {
let mut extraction_nodes = self
.nodes
.iter()
.filter(|(_, node)| matches!(node.implementation, DocumentNodeImplementation::Extract))
.map(|(id, node)| (*id, node.clone()))
.collect::<Vec<_>>();
self.nodes.retain(|_, node| !matches!(node.implementation, DocumentNodeImplementation::Extract));
for (_, node) in &mut extraction_nodes {
assert_eq!(node.inputs.len(), 1);
let NodeInput::Node { node_id, output_index, .. } = node.inputs.pop().unwrap() else {
panic!("Extract node has no input, inputs: {:?}", node.inputs);
};
assert_eq!(output_index, 0);
// TODO: check if we can read lambda checking?
let mut input_node = self.nodes.remove(&node_id).unwrap();
node.implementation = DocumentNodeImplementation::ProtoNode("graphene_core::value::ClonedNode".into());
if let Some(input) = input_node.inputs.get_mut(0) {
*input = match &input {
NodeInput::Node { .. } => NodeInput::network(generic!(T), 0),
ni => NodeInput::network(ni.ty(), 0),
};
}
for input in input_node.inputs.iter_mut() {
if let NodeInput::Node { .. } = input {
*input = NodeInput::network(generic!(T), 0)
}
}
node.inputs = vec![NodeInput::value(TaggedValue::DocumentNode(input_node), false)];
}
self.nodes.extend(extraction_nodes);
}
/// Creates a proto network for evaluating each output of this network.
pub fn into_proto_networks(self) -> impl Iterator<Item = ProtoNetwork> {
let nodes: Vec<_> = self.nodes.into_iter().map(|(id, node)| (id, node.resolve_proto_node())).collect();
// Create a network to evaluate each output
if self.exports.len() == 1 {
if let NodeInput::Node { node_id, .. } = self.exports[0] {
return vec![ProtoNetwork {
inputs: Vec::new(),
output: node_id,
nodes,
}]
.into_iter();
}
}
// Create a network to evaluate each output
let networks: Vec<_> = self
.exports
.into_iter()
.filter_map(move |output| {
if let NodeInput::Node { node_id, .. } = output {
Some(ProtoNetwork {
inputs: Vec::new(), // Inputs field is not used. Should be deleted
// inputs: vec![input_node.expect("Set node should always exist")],
// inputs: self.imports.clone(),
output: node_id,
nodes: nodes.clone(),
})
} else {
None
}
})
.collect();
networks.into_iter()
}
/// Create a [`RecursiveNodeIter`] that iterates over all [`DocumentNode`]s, including ones that are deeply nested.
pub fn recursive_nodes(&self) -> RecursiveNodeIter<'_> {
let nodes = self.nodes.iter().map(|(id, node)| (id, node, Vec::new())).collect();
RecursiveNodeIter { nodes }
}
}
/// An iterator over all [`DocumentNode`]s, including ones that are deeply nested.
pub struct RecursiveNodeIter<'a> {
nodes: Vec<(&'a NodeId, &'a DocumentNode, Vec<NodeId>)>,
}
impl<'a> Iterator for RecursiveNodeIter<'a> {
type Item = (&'a NodeId, &'a DocumentNode, Vec<NodeId>);
fn next(&mut self) -> Option<Self::Item> {
let (current_id, node, path) = self.nodes.pop()?;
if let DocumentNodeImplementation::Network(network) = &node.implementation {
self.nodes.extend(network.nodes.iter().map(|(id, node)| {
let mut nested_path = path.clone();
nested_path.push(*current_id);
(id, node, nested_path)
}));
}
Some((current_id, node, path))
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::proto::{ConstructionArgs, ProtoNetwork, ProtoNode, ProtoNodeInput};
use graphene_core::ProtoNodeIdentifier;
use std::sync::atomic::AtomicU64;
fn gen_node_id() -> NodeId {
static NODE_ID: AtomicU64 = AtomicU64::new(4);
NodeId(NODE_ID.fetch_add(1, std::sync::atomic::Ordering::SeqCst))
}
fn add_network() -> NodeNetwork {
NodeNetwork {
exports: vec![NodeInput::node(NodeId(1), 0)],
nodes: [
(
NodeId(0),
DocumentNode {
inputs: vec![NodeInput::network(concrete!(u32), 0), NodeInput::network(concrete!(u32), 1)],
implementation: DocumentNodeImplementation::ProtoNode("graphene_core::structural::ConsNode".into()),
..Default::default()
},
),
(
NodeId(1),
DocumentNode {
inputs: vec![NodeInput::node(NodeId(0), 0)],
implementation: DocumentNodeImplementation::ProtoNode("graphene_core::ops::AddPairNode".into()),
..Default::default()
},
),
]
.into_iter()
.collect(),
..Default::default()
}
}
#[test]
fn map_ids() {
let mut network = add_network();
network.map_ids(|id| NodeId(id.0 + 1));
let mapped_add = NodeNetwork {
exports: vec![NodeInput::node(NodeId(2), 0)],
nodes: [
(
NodeId(1),
DocumentNode {
inputs: vec![NodeInput::network(concrete!(u32), 0), NodeInput::network(concrete!(u32), 1)],
implementation: DocumentNodeImplementation::ProtoNode("graphene_core::structural::ConsNode".into()),
..Default::default()
},
),
(
NodeId(2),
DocumentNode {
inputs: vec![NodeInput::node(NodeId(1), 0)],
implementation: DocumentNodeImplementation::ProtoNode("graphene_core::ops::AddPairNode".into()),
..Default::default()
},
),
]
.into_iter()
.collect(),
..Default::default()
};
assert_eq!(network, mapped_add);
}
#[test]
fn extract_node() {
let id_node = DocumentNode {
inputs: vec![],
implementation: DocumentNodeImplementation::ProtoNode("graphene_core::ops::IdentityNode".into()),
..Default::default()
};
// TODO: Extend test cases to test nested network
let mut extraction_network = NodeNetwork {
exports: vec![NodeInput::node(NodeId(1), 0)],
nodes: [
id_node.clone(),
DocumentNode {
inputs: vec![NodeInput::lambda(NodeId(0), 0)],
implementation: DocumentNodeImplementation::Extract,
..Default::default()
},
]
.into_iter()
.enumerate()
.map(|(id, node)| (NodeId(id as u64), node))
.collect(),
..Default::default()
};
extraction_network.resolve_extract_nodes();
assert_eq!(extraction_network.nodes.len(), 1);
let inputs = extraction_network.nodes.get(&NodeId(1)).unwrap().inputs.clone();
assert_eq!(inputs.len(), 1);
assert!(matches!(&inputs[0].as_value(), &Some(TaggedValue::DocumentNode(network), ..) if network == &id_node));
}
#[test]
fn flatten_add() {
let mut network = NodeNetwork {
exports: vec![NodeInput::node(NodeId(1), 0)],
nodes: [(
NodeId(1),
DocumentNode {
inputs: vec![NodeInput::network(concrete!(u32), 0), NodeInput::value(TaggedValue::U32(2), false)],
implementation: DocumentNodeImplementation::Network(add_network()),
..Default::default()
},
)]
.into_iter()
.collect(),
..Default::default()
};
network.populate_dependants();
network.flatten_with_fns(NodeId(1), |self_id, inner_id| NodeId(self_id.0 * 10 + inner_id.0), gen_node_id);
let flat_network = flat_network();
println!("{flat_network:#?}");
println!("{network:#?}");
assert_eq!(flat_network, network);
}
#[test]
fn resolve_proto_node_add() {
let document_node = DocumentNode {
inputs: vec![NodeInput::network(concrete!(u32), 0), NodeInput::node(NodeId(0), 0)],
implementation: DocumentNodeImplementation::ProtoNode("graphene_core::structural::ConsNode".into()),
..Default::default()
};
let proto_node = document_node.resolve_proto_node();
let reference = ProtoNode {
identifier: "graphene_core::structural::ConsNode".into(),
input: ProtoNodeInput::ManualComposition(concrete!(u32)),
construction_args: ConstructionArgs::Nodes(vec![(NodeId(0), false)]),
..Default::default()
};
assert_eq!(proto_node, reference);
}
#[test]
fn resolve_flatten_add_as_proto_network() {
let construction_network = ProtoNetwork {
inputs: Vec::new(),
output: NodeId(11),
nodes: [
(
NodeId(10),
ProtoNode {
identifier: "graphene_core::structural::ConsNode".into(),
input: ProtoNodeInput::ManualComposition(concrete!(u32)),
construction_args: ConstructionArgs::Nodes(vec![(NodeId(14), false)]),
original_location: OriginalLocation {
path: Some(vec![NodeId(1), NodeId(0)]),
inputs_source: [(Source { node: vec![NodeId(1)], index: 1 }, 1)].into(),
inputs_exposed: vec![true, true],
skip_inputs: 0,
..Default::default()
},
..Default::default()
},
),
(
NodeId(11),
ProtoNode {
identifier: "graphene_core::ops::AddPairNode".into(),
input: ProtoNodeInput::Node(NodeId(10)),
construction_args: ConstructionArgs::Nodes(vec![]),
original_location: OriginalLocation {
path: Some(vec![NodeId(1), NodeId(1)]),
inputs_source: HashMap::new(),
inputs_exposed: vec![true],
skip_inputs: 0,
..Default::default()
},
..Default::default()
},
),
(
NodeId(14),
ProtoNode {
identifier: "graphene_core::value::ClonedNode".into(),
input: ProtoNodeInput::ManualComposition(concrete!(graphene_core::Context)),
construction_args: ConstructionArgs::Value(TaggedValue::U32(2).into()),
original_location: OriginalLocation {
path: Some(vec![NodeId(1), NodeId(4)]),
inputs_source: HashMap::new(),
inputs_exposed: vec![true, false],
skip_inputs: 0,
..Default::default()
},
..Default::default()
},
),
]
.into_iter()
.collect(),
};
let network = flat_network();
let mut resolved_network = network.into_proto_networks().collect::<Vec<_>>();
resolved_network[0].nodes.sort_unstable_by_key(|(id, _)| *id);
println!("{:#?}", resolved_network[0]);
println!("{construction_network:#?}");
pretty_assertions::assert_eq!(resolved_network[0], construction_network);
}
fn flat_network() -> NodeNetwork {
NodeNetwork {
exports: vec![NodeInput::node(NodeId(11), 0)],
nodes: [
(
NodeId(10),
DocumentNode {
inputs: vec![NodeInput::network(concrete!(u32), 0), NodeInput::node(NodeId(14), 0)],
implementation: DocumentNodeImplementation::ProtoNode("graphene_core::structural::ConsNode".into()),
original_location: OriginalLocation {
path: Some(vec![NodeId(1), NodeId(0)]),
inputs_source: [(Source { node: vec![NodeId(1)], index: 1 }, 1)].into(),
inputs_exposed: vec![true, true],
skip_inputs: 0,
..Default::default()
},
..Default::default()
},
),
(
NodeId(14),
DocumentNode {
inputs: vec![NodeInput::value(TaggedValue::U32(2), false)],
implementation: DocumentNodeImplementation::ProtoNode("graphene_core::value::ClonedNode".into()),
original_location: OriginalLocation {
path: Some(vec![NodeId(1), NodeId(4)]),
inputs_source: HashMap::new(),
inputs_exposed: vec![true, false],
skip_inputs: 0,
..Default::default()
},
..Default::default()
},
),
(
NodeId(11),
DocumentNode {
inputs: vec![NodeInput::node(NodeId(10), 0)],
implementation: DocumentNodeImplementation::ProtoNode("graphene_core::ops::AddPairNode".into()),
original_location: OriginalLocation {
path: Some(vec![NodeId(1), NodeId(1)]),
inputs_source: HashMap::new(),
inputs_exposed: vec![true],
skip_inputs: 0,
..Default::default()
},
..Default::default()
},
),
]
.into_iter()
.collect(),
..Default::default()
}
}
fn two_node_identity() -> NodeNetwork {
NodeNetwork {
exports: vec![NodeInput::node(NodeId(1), 0), NodeInput::node(NodeId(2), 0)],
nodes: [
(
NodeId(1),
DocumentNode {
inputs: vec![NodeInput::network(concrete!(u32), 0)],
implementation: DocumentNodeImplementation::ProtoNode(ProtoNodeIdentifier::new("graphene_core::ops::IdentityNode")),
..Default::default()
},
),
(
NodeId(2),
DocumentNode {
inputs: vec![NodeInput::network(concrete!(u32), 1)],
implementation: DocumentNodeImplementation::ProtoNode(ProtoNodeIdentifier::new("graphene_core::ops::IdentityNode")),
..Default::default()
},
),
]
.into_iter()
.collect(),
..Default::default()
}
}
fn output_duplicate(network_outputs: Vec<NodeInput>, result_node_input: NodeInput) -> NodeNetwork {
let mut network = NodeNetwork {
exports: network_outputs,
nodes: [
(
NodeId(1),
DocumentNode {
inputs: vec![NodeInput::value(TaggedValue::F64(1.), false), NodeInput::value(TaggedValue::F64(2.), false)],
implementation: DocumentNodeImplementation::Network(two_node_identity()),
..Default::default()
},
),
(
NodeId(2),
DocumentNode {
inputs: vec![result_node_input],
implementation: DocumentNodeImplementation::ProtoNode(ProtoNodeIdentifier::new("graphene_core::ops::IdentityNode")),
..Default::default()
},
),
]
.into_iter()
.collect(),
..Default::default()
};
let _new_ids = 101..;
network.populate_dependants();
network.flatten_with_fns(NodeId(1), |self_id, inner_id| NodeId(self_id.0 * 10 + inner_id.0), || NodeId(10000));
network.flatten_with_fns(NodeId(2), |self_id, inner_id| NodeId(self_id.0 * 10 + inner_id.0), || NodeId(10001));
network.remove_dead_nodes(0);
network
}
#[test]
fn simple_duplicate() {
let result = output_duplicate(vec![NodeInput::node(NodeId(1), 0)], NodeInput::node(NodeId(1), 0));
println!("{result:#?}");
assert_eq!(result.exports.len(), 1, "The number of outputs should remain as 1");
assert_eq!(result.exports[0], NodeInput::node(NodeId(11), 0), "The outer network output should be from a duplicated inner network");
let mut ids = result.nodes.keys().copied().collect::<Vec<_>>();
ids.sort();
assert_eq!(ids, vec![NodeId(11), NodeId(10010)], "Should only contain identity and values");
}
// TODO: Write more tests
// #[test]
// fn out_of_order_duplicate() {
// let result = output_duplicate(vec![NodeInput::node(NodeId(10), 1), NodeInput::node(NodeId(10), 0)], NodeInput::node(NodeId(10), 0);
// assert_eq!(
// result.outputs[0],
// NodeInput::node(NodeId(101), 0),
// "The first network output should be from a duplicated nested network"
// );
// assert_eq!(
// result.outputs[1],
// NodeInput::node(NodeId(10), 0),
// "The second network output should be from the original nested network"
// );
// assert!(
// result.nodes.contains_key(&NodeId(10)) && result.nodes.contains_key(&NodeId(101)) && result.nodes.len() == 2,
// "Network should contain two duplicated nodes"
// );
// for (node_id, input_value, inner_id) in [(10, 1., 1), (101, 2., 2)] {
// let nested_network_node = result.nodes.get(&NodeId(node_id)).unwrap();
// assert_eq!(nested_network_node.name, "Nested network".to_string(), "Name should not change");
// assert_eq!(nested_network_node.inputs, vec![NodeInput::value(TaggedValue::F32(input_value), false)], "Input should be stable");
// let inner_network = nested_network_node.implementation.get_network().expect("Implementation should be network");
// assert_eq!(inner_network.inputs, vec![inner_id], "The input should be sent to the second node");
// assert_eq!(inner_network.outputs, vec![NodeInput::node(NodeId(inner_id), 0)], "The output should be node id");
// assert_eq!(inner_network.nodes.get(&NodeId(inner_id)).unwrap().name, format!("Identity {inner_id}"), "The node should be identity");
// }
// }
// #[test]
// fn using_other_node_duplicate() {
// let result = output_duplicate(vec![NodeInput::node(NodeId(11), 0)], NodeInput::node(NodeId(10), 1);
// assert_eq!(result.outputs, vec![NodeInput::node(NodeId(11), 0)], "The network output should be the result node");
// assert!(
// result.nodes.contains_key(&NodeId(11)) && result.nodes.contains_key(&NodeId(101)) && result.nodes.len() == 2,
// "Network should contain a duplicated node and a result node"
// );
// let result_node = result.nodes.get(&NodeId(11)).unwrap();
// assert_eq!(result_node.inputs, vec![NodeInput::node(NodeId(101), 0)], "Result node should refer to duplicate node as input");
// let nested_network_node = result.nodes.get(&NodeId(101)).unwrap();
// assert_eq!(nested_network_node.name, "Nested network".to_string(), "Name should not change");
// assert_eq!(nested_network_node.inputs, vec![NodeInput::value(TaggedValue::F32(2.), false)], "Input should be 2");
// let inner_network = nested_network_node.implementation.get_network().expect("Implementation should be network");
// assert_eq!(inner_network.inputs, vec![2], "The input should be sent to the second node");
// assert_eq!(inner_network.outputs, vec![NodeInput::node(NodeId(2), 0)], "The output should be node id 2");
// assert_eq!(inner_network.nodes.get(&NodeId(2)).unwrap().name, "Identity 2", "The node should be identity 2");
// }
}
|