File size: 40,389 Bytes
2409829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 |
use crate::document::{InlineRust, value};
use crate::document::{NodeId, OriginalLocation};
pub use graphene_core::registry::*;
use graphene_core::*;
use rustc_hash::FxHashMap;
use std::borrow::Cow;
use std::collections::{HashMap, HashSet};
use std::fmt::Debug;
use std::hash::Hash;
#[derive(Debug, Default, PartialEq, Clone, Hash, Eq, serde::Serialize, serde::Deserialize)]
/// A list of [`ProtoNode`]s, which is an intermediate step between the [`crate::document::NodeNetwork`] and the `BorrowTree` containing a single flattened network.
pub struct ProtoNetwork {
// TODO: remove this since it seems to be unused?
// Should a proto Network even allow inputs? Don't think so
pub inputs: Vec<NodeId>,
/// The node ID that provides the output. This node is then responsible for calling the rest of the graph.
pub output: NodeId,
/// A list of nodes stored in a Vec to allow for sorting.
pub nodes: Vec<(NodeId, ProtoNode)>,
}
impl core::fmt::Display for ProtoNetwork {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.write_str("Proto Network with nodes: ")?;
fn write_node(f: &mut core::fmt::Formatter<'_>, network: &ProtoNetwork, id: NodeId, indent: usize) -> core::fmt::Result {
f.write_str(&"\t".repeat(indent))?;
let Some((_, node)) = network.nodes.iter().find(|(node_id, _)| *node_id == id) else {
return f.write_str("{{Unknown Node}}");
};
f.write_str("Node: ")?;
f.write_str(&node.identifier.name)?;
f.write_str("\n")?;
f.write_str(&"\t".repeat(indent))?;
f.write_str("{\n")?;
f.write_str(&"\t".repeat(indent + 1))?;
f.write_str("Input: ")?;
match &node.input {
ProtoNodeInput::None => f.write_str("None")?,
ProtoNodeInput::ManualComposition(ty) => f.write_fmt(format_args!("Manual Composition (type = {ty:?})"))?,
ProtoNodeInput::Node(_) => f.write_str("Node")?,
ProtoNodeInput::NodeLambda(_) => f.write_str("Lambda Node")?,
}
f.write_str("\n")?;
match &node.construction_args {
ConstructionArgs::Value(value) => {
f.write_str(&"\t".repeat(indent + 1))?;
f.write_fmt(format_args!("Value construction argument: {value:?}"))?
}
ConstructionArgs::Nodes(nodes) => {
for id in nodes {
write_node(f, network, id.0, indent + 1)?;
}
}
ConstructionArgs::Inline(inline) => {
f.write_str(&"\t".repeat(indent + 1))?;
f.write_fmt(format_args!("Inline construction argument: {inline:?}"))?
}
}
f.write_str(&"\t".repeat(indent))?;
f.write_str("}\n")?;
Ok(())
}
let id = self.output;
write_node(f, self, id, 0)
}
}
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
/// Defines the arguments used to construct the boxed node struct. This is used to call the constructor function in the `node_registry.rs` file - which is hidden behind a wall of macros.
pub enum ConstructionArgs {
/// A value of a type that is known, allowing serialization (serde::Deserialize is not object safe)
Value(MemoHash<value::TaggedValue>),
/// A list of nodes used as inputs to the constructor function in `node_registry.rs`.
/// The bool indicates whether to treat the node as lambda node.
// TODO: use a struct for clearer naming.
Nodes(Vec<(NodeId, bool)>),
/// Used for GPU computation to work around the limitations of rust-gpu.
Inline(InlineRust),
}
impl Eq for ConstructionArgs {}
impl PartialEq for ConstructionArgs {
fn eq(&self, other: &Self) -> bool {
match (&self, &other) {
(Self::Nodes(n1), Self::Nodes(n2)) => n1 == n2,
(Self::Value(v1), Self::Value(v2)) => v1 == v2,
_ => {
use std::hash::Hasher;
let hash = |input: &Self| {
let mut hasher = rustc_hash::FxHasher::default();
input.hash(&mut hasher);
hasher.finish()
};
hash(self) == hash(other)
}
}
}
}
impl Hash for ConstructionArgs {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
core::mem::discriminant(self).hash(state);
match self {
Self::Nodes(nodes) => {
for node in nodes {
node.hash(state);
}
}
Self::Value(value) => value.hash(state),
Self::Inline(inline) => inline.hash(state),
}
}
}
impl ConstructionArgs {
// TODO: what? Used in the gpu_compiler crate for something.
pub fn new_function_args(&self) -> Vec<String> {
match self {
ConstructionArgs::Nodes(nodes) => nodes.iter().map(|(n, _)| format!("n{:0x}", n.0)).collect(),
ConstructionArgs::Value(value) => vec![value.to_primitive_string()],
ConstructionArgs::Inline(inline) => vec![inline.expr.clone()],
}
}
}
#[derive(Debug, Clone, PartialEq, Hash, Eq, serde::Serialize, serde::Deserialize)]
/// A proto node is an intermediate step between the `DocumentNode` and the boxed struct that actually runs the node (found in the [`BorrowTree`]).
/// At different stages in the compilation process, this struct will be transformed into a reduced (more restricted) form acting as a subset of its original form, but that restricted form is still valid in the earlier stage in the compilation process before it was transformed.
pub struct ProtoNode {
pub construction_args: ConstructionArgs,
pub input: ProtoNodeInput,
pub identifier: ProtoNodeIdentifier,
pub original_location: OriginalLocation,
pub skip_deduplication: bool,
}
impl Default for ProtoNode {
fn default() -> Self {
Self {
identifier: ProtoNodeIdentifier::new("graphene_core::ops::IdentityNode"),
construction_args: ConstructionArgs::Value(value::TaggedValue::U32(0).into()),
input: ProtoNodeInput::None,
original_location: OriginalLocation::default(),
skip_deduplication: false,
}
}
}
/// Similar to the document node's [`crate::document::NodeInput`].
#[derive(Debug, PartialEq, Eq, Clone, Hash, serde::Serialize, serde::Deserialize)]
pub enum ProtoNodeInput {
/// This input will be converted to `()` as the call argument.
None,
/// A ManualComposition input represents an input that opts out of being resolved through the `ComposeNode`, which first runs the previous (upstream) node, then passes that evaluated
/// result to this node. Instead, ManualComposition lets this node actually consume the provided input instead of passing it to its predecessor.
///
/// Say we have the network `a -> b -> c` where `c` is the output node and `a` is the input node.
/// We would expect `a` to get input from the network, `b` to get input from `a`, and `c` to get input from `b`.
/// This could be represented as `f(x) = c(b(a(x)))`. `a` is run with input `x` from the network. `b` is run with input from `a`. `c` is run with input from `b`.
///
/// However if `b`'s input is using manual composition, this means it would instead be `f(x) = c(b(x))`. This means that `b` actually gets input from the network, and `a` is not automatically
/// executed as it would be using the default ComposeNode flow. Now `b` can use its own logic to decide when or if it wants to run `a` and how to use its output. For example, the CacheNode can
/// look up `x` in its cache and return the result, or otherwise call `a`, cache the result, and return it.
ManualComposition(Type),
/// The previous node where automatic (not manual) composition occurs when compiled. The entire network, of which the node is the output, is fed as input.
///
/// Grayscale example:
///
/// We're interested in receiving an input of the desaturated image data which has been fed through a grayscale filter.
/// (If we were interested in the grayscale filter itself, we would use the `NodeLambda` variant.)
Node(NodeId),
/// Unlike the `Node` variant, with `NodeLambda` we treat the connected node singularly as a lambda node while ignoring all nodes which feed into it from upstream.
///
/// Grayscale example:
///
/// We're interested in receiving an input of a particular image filter, such as a grayscale filter in the form of a grayscale node lambda.
/// (If we were interested in some image data that had been fed through a grayscale filter, we would use the `Node` variant.)
NodeLambda(NodeId),
}
impl ProtoNode {
/// A stable node ID is a hash of a node that should stay constant. This is used in order to remove duplicates from the graph.
/// In the case of `skip_deduplication`, the `document_node_path` is also hashed in order to avoid duplicate monitor nodes from being removed (which would make it impossible to load thumbnails).
pub fn stable_node_id(&self) -> Option<NodeId> {
use std::hash::Hasher;
let mut hasher = rustc_hash::FxHasher::default();
self.identifier.name.hash(&mut hasher);
self.construction_args.hash(&mut hasher);
if self.skip_deduplication {
self.original_location.path.hash(&mut hasher);
}
std::mem::discriminant(&self.input).hash(&mut hasher);
match self.input {
ProtoNodeInput::None => (),
ProtoNodeInput::ManualComposition(ref ty) => {
ty.hash(&mut hasher);
}
ProtoNodeInput::Node(id) => (id, false).hash(&mut hasher),
ProtoNodeInput::NodeLambda(id) => (id, true).hash(&mut hasher),
};
Some(NodeId(hasher.finish()))
}
/// Construct a new [`ProtoNode`] with the specified construction args and a `ClonedNode` implementation.
pub fn value(value: ConstructionArgs, path: Vec<NodeId>) -> Self {
let inputs_exposed = match &value {
ConstructionArgs::Nodes(nodes) => nodes.len() + 1,
_ => 2,
};
Self {
identifier: ProtoNodeIdentifier::new("graphene_core::value::ClonedNode"),
construction_args: value,
input: ProtoNodeInput::ManualComposition(concrete!(Context)),
original_location: OriginalLocation {
path: Some(path),
inputs_exposed: vec![false; inputs_exposed],
..Default::default()
},
skip_deduplication: false,
}
}
/// Converts all references to other node IDs into new IDs by running the specified function on them.
/// This can be used when changing the IDs of the nodes, for example in the case of generating stable IDs.
pub fn map_ids(&mut self, f: impl Fn(NodeId) -> NodeId, skip_lambdas: bool) {
match self.input {
ProtoNodeInput::Node(id) => self.input = ProtoNodeInput::Node(f(id)),
ProtoNodeInput::NodeLambda(id) => {
if !skip_lambdas {
self.input = ProtoNodeInput::NodeLambda(f(id))
}
}
_ => (),
}
if let ConstructionArgs::Nodes(ids) = &mut self.construction_args {
ids.iter_mut().filter(|(_, lambda)| !(skip_lambdas && *lambda)).for_each(|(id, _)| *id = f(*id));
}
}
pub fn unwrap_construction_nodes(&self) -> Vec<(NodeId, bool)> {
match &self.construction_args {
ConstructionArgs::Nodes(nodes) => nodes.clone(),
_ => panic!("tried to unwrap nodes from non node construction args \n node: {self:#?}"),
}
}
}
#[derive(Clone, Copy, PartialEq)]
enum NodeState {
Unvisited,
Visiting,
Visited,
}
impl ProtoNetwork {
fn check_ref(&self, ref_id: &NodeId, id: &NodeId) {
debug_assert!(
self.nodes.iter().any(|(check_id, _)| check_id == ref_id),
"Node id:{id} has a reference which uses node id:{ref_id} which doesn't exist in network {self:#?}"
);
}
#[cfg(debug_assertions)]
pub fn example() -> (Self, NodeId, ProtoNode) {
let node_id = NodeId(1);
let proto_node = ProtoNode::default();
let proto_network = ProtoNetwork {
inputs: vec![node_id],
output: node_id,
nodes: vec![(node_id, proto_node.clone())],
};
(proto_network, node_id, proto_node)
}
/// Construct a hashmap containing a list of the nodes that depend on this proto network.
pub fn collect_outwards_edges(&self) -> HashMap<NodeId, Vec<NodeId>> {
let mut edges: HashMap<NodeId, Vec<NodeId>> = HashMap::new();
for (id, node) in &self.nodes {
match &node.input {
ProtoNodeInput::Node(ref_id) | ProtoNodeInput::NodeLambda(ref_id) => {
self.check_ref(ref_id, id);
edges.entry(*ref_id).or_default().push(*id)
}
_ => (),
}
if let ConstructionArgs::Nodes(ref_nodes) = &node.construction_args {
for (ref_id, _) in ref_nodes {
self.check_ref(ref_id, id);
edges.entry(*ref_id).or_default().push(*id)
}
}
}
edges
}
/// Convert all node IDs to be stable (based on the hash generated by [`ProtoNode::stable_node_id`]).
/// This function requires that the graph be topologically sorted.
pub fn generate_stable_node_ids(&mut self) {
debug_assert!(self.is_topologically_sorted());
let outwards_edges = self.collect_outwards_edges();
for index in 0..self.nodes.len() {
let Some(sni) = self.nodes[index].1.stable_node_id() else {
panic!("failed to generate stable node id for node {:#?}", self.nodes[index].1);
};
self.replace_node_id(&outwards_edges, NodeId(index as u64), sni, false);
self.nodes[index].0 = sni;
}
}
// TODO: Remove
/// Create a hashmap with the list of nodes this proto network depends on/uses as inputs.
pub fn collect_inwards_edges(&self) -> HashMap<NodeId, Vec<NodeId>> {
let mut edges: HashMap<NodeId, Vec<NodeId>> = HashMap::new();
for (id, node) in &self.nodes {
match &node.input {
ProtoNodeInput::Node(ref_id) | ProtoNodeInput::NodeLambda(ref_id) => {
self.check_ref(ref_id, id);
edges.entry(*id).or_default().push(*ref_id)
}
_ => (),
}
if let ConstructionArgs::Nodes(ref_nodes) = &node.construction_args {
for (ref_id, _) in ref_nodes {
self.check_ref(ref_id, id);
edges.entry(*id).or_default().push(*ref_id)
}
}
}
edges
}
fn collect_inwards_edges_with_mapping(&self) -> (Vec<Vec<usize>>, FxHashMap<NodeId, usize>) {
let id_map: FxHashMap<_, _> = self.nodes.iter().enumerate().map(|(idx, (id, _))| (*id, idx)).collect();
// Collect inwards edges using dense indices
let mut inwards_edges = vec![Vec::new(); self.nodes.len()];
for (node_id, node) in &self.nodes {
let node_index = id_map[node_id];
match &node.input {
ProtoNodeInput::Node(ref_id) | ProtoNodeInput::NodeLambda(ref_id) => {
self.check_ref(ref_id, &NodeId(node_index as u64));
inwards_edges[node_index].push(id_map[ref_id]);
}
_ => {}
}
if let ConstructionArgs::Nodes(ref_nodes) = &node.construction_args {
for (ref_id, _) in ref_nodes {
self.check_ref(ref_id, &NodeId(node_index as u64));
inwards_edges[node_index].push(id_map[ref_id]);
}
}
}
(inwards_edges, id_map)
}
/// Inserts a [`structural::ComposeNode`] for each node that has a [`ProtoNodeInput::Node`]. The compose node evaluates the first node, and then sends the result into the second node.
pub fn resolve_inputs(&mut self) -> Result<(), String> {
// Perform topological sort once
self.reorder_ids()?;
let max_id = self.nodes.len() as u64 - 1;
// Collect outward edges once
let outwards_edges = self.collect_outwards_edges();
// Iterate over nodes in topological order
for node_id in 0..=max_id {
let node_id = NodeId(node_id);
let (_, node) = &mut self.nodes[node_id.0 as usize];
if let ProtoNodeInput::Node(input_node_id) = node.input {
// Create a new node that composes the current node and its input node
let compose_node_id = NodeId(self.nodes.len() as u64);
let (_, input_node_id_proto) = &self.nodes[input_node_id.0 as usize];
let input = input_node_id_proto.input.clone();
let mut path = input_node_id_proto.original_location.path.clone();
if let Some(path) = &mut path {
path.push(node_id);
}
self.nodes.push((
compose_node_id,
ProtoNode {
identifier: ProtoNodeIdentifier::new("graphene_core::structural::ComposeNode"),
construction_args: ConstructionArgs::Nodes(vec![(input_node_id, false), (node_id, true)]),
input,
original_location: OriginalLocation { path, ..Default::default() },
skip_deduplication: false,
},
));
self.replace_node_id(&outwards_edges, node_id, compose_node_id, true);
}
}
self.reorder_ids()?;
Ok(())
}
/// Update all of the references to a node ID in the graph with a new ID named `compose_node_id`.
fn replace_node_id(&mut self, outwards_edges: &HashMap<NodeId, Vec<NodeId>>, node_id: NodeId, compose_node_id: NodeId, skip_lambdas: bool) {
// Update references in other nodes to use the new compose node
if let Some(referring_nodes) = outwards_edges.get(&node_id) {
for &referring_node_id in referring_nodes {
let (_, referring_node) = &mut self.nodes[referring_node_id.0 as usize];
referring_node.map_ids(|id| if id == node_id { compose_node_id } else { id }, skip_lambdas)
}
}
if self.output == node_id {
self.output = compose_node_id;
}
self.inputs.iter_mut().for_each(|id| {
if *id == node_id {
*id = compose_node_id;
}
});
}
// Based on https://en.wikipedia.org/wiki/Topological_sorting#Depth-first_search
// This approach excludes nodes that are not connected
pub fn topological_sort(&self) -> Result<(Vec<NodeId>, FxHashMap<NodeId, usize>), String> {
let (inwards_edges, id_map) = self.collect_inwards_edges_with_mapping();
let mut sorted = Vec::with_capacity(self.nodes.len());
let mut stack = vec![id_map[&self.output]];
let mut state = vec![NodeState::Unvisited; self.nodes.len()];
while let Some(&node_index) = stack.last() {
match state[node_index] {
NodeState::Unvisited => {
state[node_index] = NodeState::Visiting;
for &dep_index in inwards_edges[node_index].iter().rev() {
match state[dep_index] {
NodeState::Visiting => {
return Err(format!("Cycle detected involving node {}", self.nodes[dep_index].0));
}
NodeState::Unvisited => {
stack.push(dep_index);
}
NodeState::Visited => {}
}
}
}
NodeState::Visiting => {
stack.pop();
state[node_index] = NodeState::Visited;
sorted.push(NodeId(node_index as u64));
}
NodeState::Visited => {
stack.pop();
}
}
}
Ok((sorted, id_map))
}
fn is_topologically_sorted(&self) -> bool {
let mut visited = HashSet::new();
let inwards_edges = self.collect_inwards_edges();
for (id, _) in &self.nodes {
for &dependency in inwards_edges.get(id).unwrap_or(&Vec::new()) {
if !visited.contains(&dependency) {
dbg!(id, dependency);
dbg!(&visited);
dbg!(&self.nodes);
return false;
}
}
visited.insert(*id);
}
true
}
/// Sort the nodes vec so it is in a topological order. This ensures that no node takes an input from a node that is found later in the list.
fn reorder_ids(&mut self) -> Result<(), String> {
let (order, _id_map) = self.topological_sort()?;
// // Map of node ids to their current index in the nodes vector
// let current_positions: FxHashMap<_, _> = self.nodes.iter().enumerate().map(|(pos, (id, _))| (*id, pos)).collect();
// // Map of node ids to their new index based on topological order
let new_positions: FxHashMap<_, _> = order.iter().enumerate().map(|(pos, id)| (self.nodes[id.0 as usize].0, pos)).collect();
// assert_eq!(id_map, current_positions);
// Create a new nodes vector based on the topological order
let mut new_nodes = Vec::with_capacity(order.len());
for (index, &id) in order.iter().enumerate() {
let mut node = std::mem::take(&mut self.nodes[id.0 as usize].1);
// Update node references to reflect the new order
node.map_ids(|id| NodeId(*new_positions.get(&id).expect("node not found in lookup table") as u64), false);
new_nodes.push((NodeId(index as u64), node));
}
// Update node references to reflect the new order
// new_nodes.iter_mut().for_each(|(_, node)| {
// node.map_ids(|id| *new_positions.get(&id).expect("node not found in lookup table"), false);
// });
// Update the nodes vector and other references
self.nodes = new_nodes;
self.inputs = self.inputs.iter().filter_map(|id| new_positions.get(id).map(|x| NodeId(*x as u64))).collect();
self.output = NodeId(*new_positions.get(&self.output).unwrap() as u64);
assert_eq!(order.len(), self.nodes.len());
Ok(())
}
}
#[derive(Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub enum GraphErrorType {
NodeNotFound(NodeId),
InputNodeNotFound(NodeId),
UnexpectedGenerics { index: usize, inputs: Vec<Type> },
NoImplementations,
NoConstructor,
InvalidImplementations { inputs: String, error_inputs: Vec<Vec<(usize, (Type, Type))>> },
MultipleImplementations { inputs: String, valid: Vec<NodeIOTypes> },
}
impl Debug for GraphErrorType {
// TODO: format with the document graph context so the input index is the same as in the graph UI.
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
GraphErrorType::NodeNotFound(id) => write!(f, "Input node {id} is not present in the typing context"),
GraphErrorType::InputNodeNotFound(id) => write!(f, "Input node {id} is not present in the typing context"),
GraphErrorType::UnexpectedGenerics { index, inputs } => write!(f, "Generic inputs should not exist but found at {index}: {inputs:?}"),
GraphErrorType::NoImplementations => write!(f, "No implementations found"),
GraphErrorType::NoConstructor => write!(f, "No construct found for node"),
GraphErrorType::InvalidImplementations { inputs, error_inputs } => {
let format_error = |(index, (found, expected)): &(usize, (Type, Type))| {
let index = index + 1;
format!(
"\
β’ Input {index}:\n\
β¦found: {found}\n\
β¦expected: {expected}\
"
)
};
let format_error_list = |errors: &Vec<(usize, (Type, Type))>| errors.iter().map(format_error).collect::<Vec<_>>().join("\n");
let mut errors = error_inputs.iter().map(format_error_list).collect::<Vec<_>>();
errors.sort();
let errors = errors.join("\n");
let incompatibility = if errors.chars().filter(|&c| c == 'β’').count() == 1 {
"This input type is incompatible:"
} else {
"These input types are incompatible:"
};
write!(
f,
"\
{incompatibility}\n\
{errors}\n\
\n\
The node is currently receiving all of the following input types:\n\
{inputs}\n\
This is not a supported arrangement of types for the node.\
"
)
}
GraphErrorType::MultipleImplementations { inputs, valid } => write!(f, "Multiple implementations found ({inputs}):\n{valid:#?}"),
}
}
}
#[derive(Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub struct GraphError {
pub node_path: Vec<NodeId>,
pub identifier: Cow<'static, str>,
pub error: GraphErrorType,
}
impl GraphError {
pub fn new(node: &ProtoNode, text: impl Into<GraphErrorType>) -> Self {
Self {
node_path: node.original_location.path.clone().unwrap_or_default(),
identifier: node.identifier.name.clone(),
error: text.into(),
}
}
}
impl Debug for GraphError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("NodeGraphError")
.field("path", &self.node_path.iter().map(|id| id.0).collect::<Vec<_>>())
.field("identifier", &self.identifier.to_string())
.field("error", &self.error)
.finish()
}
}
pub type GraphErrors = Vec<GraphError>;
/// The `TypingContext` is used to store the types of the nodes indexed by their stable node id.
#[derive(Default, Clone, dyn_any::DynAny)]
pub struct TypingContext {
lookup: Cow<'static, HashMap<ProtoNodeIdentifier, HashMap<NodeIOTypes, NodeConstructor>>>,
inferred: HashMap<NodeId, NodeIOTypes>,
constructor: HashMap<NodeId, NodeConstructor>,
}
impl TypingContext {
/// Creates a new `TypingContext` with the given lookup table.
pub fn new(lookup: &'static HashMap<ProtoNodeIdentifier, HashMap<NodeIOTypes, NodeConstructor>>) -> Self {
Self {
lookup: Cow::Borrowed(lookup),
..Default::default()
}
}
/// Updates the `TypingContext` with a given proto network. This will infer the types of the nodes
/// and store them in the `inferred` field. The proto network has to be topologically sorted
/// and contain fully resolved stable node ids.
pub fn update(&mut self, network: &ProtoNetwork) -> Result<(), GraphErrors> {
for (id, node) in network.nodes.iter() {
self.infer(*id, node)?;
}
Ok(())
}
pub fn remove_inference(&mut self, node_id: NodeId) -> Option<NodeIOTypes> {
self.constructor.remove(&node_id);
self.inferred.remove(&node_id)
}
/// Returns the node constructor for a given node id.
pub fn constructor(&self, node_id: NodeId) -> Option<NodeConstructor> {
self.constructor.get(&node_id).copied()
}
/// Returns the type of a given node id if it exists
pub fn type_of(&self, node_id: NodeId) -> Option<&NodeIOTypes> {
self.inferred.get(&node_id)
}
/// Returns the inferred types for a given node id.
pub fn infer(&mut self, node_id: NodeId, node: &ProtoNode) -> Result<NodeIOTypes, GraphErrors> {
// Return the inferred type if it is already known
if let Some(inferred) = self.inferred.get(&node_id) {
return Ok(inferred.clone());
}
let inputs = match node.construction_args {
// If the node has a value input we can infer the return type from it
ConstructionArgs::Value(ref v) => {
assert!(matches!(node.input, ProtoNodeInput::None) || matches!(node.input, ProtoNodeInput::ManualComposition(ref x) if x == &concrete!(Context)));
// TODO: This should return a reference to the value
let types = NodeIOTypes::new(concrete!(Context), Type::Future(Box::new(v.ty())), vec![]);
self.inferred.insert(node_id, types.clone());
return Ok(types);
}
// If the node has nodes as inputs we can infer the types from the node outputs
ConstructionArgs::Nodes(ref nodes) => nodes
.iter()
.map(|(id, _)| {
self.inferred
.get(id)
.ok_or_else(|| vec![GraphError::new(node, GraphErrorType::NodeNotFound(*id))])
.map(|node| node.ty())
})
.collect::<Result<Vec<Type>, GraphErrors>>()?,
ConstructionArgs::Inline(ref inline) => vec![inline.ty.clone()],
};
// Get the node input type from the proto node declaration
// TODO: When removing automatic composition, rename this to just `call_argument`
let primary_input_or_call_argument = match node.input {
ProtoNodeInput::None => concrete!(()),
ProtoNodeInput::ManualComposition(ref ty) => ty.clone(),
ProtoNodeInput::Node(id) | ProtoNodeInput::NodeLambda(id) => {
let input = self.inferred.get(&id).ok_or_else(|| vec![GraphError::new(node, GraphErrorType::InputNodeNotFound(id))])?;
input.return_value.clone()
}
};
let using_manual_composition = matches!(node.input, ProtoNodeInput::ManualComposition(_) | ProtoNodeInput::None);
let impls = self.lookup.get(&node.identifier).ok_or_else(|| vec![GraphError::new(node, GraphErrorType::NoImplementations)])?;
if let Some(index) = inputs.iter().position(|p| {
matches!(p,
Type::Fn(_, b) if matches!(b.as_ref(), Type::Generic(_)))
}) {
return Err(vec![GraphError::new(node, GraphErrorType::UnexpectedGenerics { index, inputs })]);
}
/// Checks if a proposed input to a particular (primary or secondary) input connector is valid for its type signature.
/// `from` indicates the value given to a input, `to` indicates the input's allowed type as specified by its type signature.
fn valid_type(from: &Type, to: &Type) -> bool {
match (from, to) {
// Direct comparison of two concrete types.
(Type::Concrete(type1), Type::Concrete(type2)) => type1 == type2,
// Check inner type for futures
(Type::Future(type1), Type::Future(type2)) => valid_type(type1, type2),
// Direct comparison of two function types.
// Note: in the presence of subtyping, functions are considered on a "greater than or equal to" basis of its function type's generality.
// That means we compare their types with a contravariant relationship, which means that a more general type signature may be substituted for a more specific type signature.
// For example, we allow `T -> V` to be substituted with `T' -> V` or `() -> V` where T' and () are more specific than T.
// This allows us to supply anything to a function that is satisfied with `()`.
// In other words, we are implementing these two relations, where the >= operator means that the left side is more general than the right side:
// - `T >= T' β (T' -> V) >= (T -> V)` (functions are contravariant in their input types)
// - `V >= V' β (T -> V) >= (T -> V')` (functions are covariant in their output types)
// While these two relations aren't a truth about the universe, they are a design decision that we are employing in our language design that is also common in other languages.
// For example, Rust implements these same relations as it describes here: <https://doc.rust-lang.org/nomicon/subtyping.html>
// Graphite doesn't have subtyping currently, but it used to have it, and may do so again, so we make sure to compare types in this way to make things easier.
// More details explained here: <https://github.com/GraphiteEditor/Graphite/issues/1741>
(Type::Fn(in1, out1), Type::Fn(in2, out2)) => valid_type(out2, out1) && valid_type(in1, in2),
// If either the proposed input or the allowed input are generic, we allow the substitution (meaning this is a valid subtype).
// TODO: Add proper generic counting which is not based on the name
(Type::Generic(_), _) | (_, Type::Generic(_)) => true,
// Reject unknown type relationships.
_ => false,
}
}
// List of all implementations that match the input types
let valid_output_types = impls
.keys()
.filter(|node_io| valid_type(&node_io.call_argument, &primary_input_or_call_argument) && inputs.iter().zip(node_io.inputs.iter()).all(|(p1, p2)| valid_type(p1, p2)))
.collect::<Vec<_>>();
// Attempt to substitute generic types with concrete types and save the list of results
let substitution_results = valid_output_types
.iter()
.map(|node_io| {
let generics_lookup: Result<HashMap<_, _>, _> = collect_generics(node_io)
.iter()
.map(|generic| check_generic(node_io, &primary_input_or_call_argument, &inputs, generic).map(|x| (generic.to_string(), x)))
.collect();
generics_lookup.map(|generics_lookup| {
let orig_node_io = (*node_io).clone();
let mut new_node_io = orig_node_io.clone();
replace_generics(&mut new_node_io, &generics_lookup);
(new_node_io, orig_node_io)
})
})
.collect::<Vec<_>>();
// Collect all substitutions that are valid
let valid_impls = substitution_results.iter().filter_map(|result| result.as_ref().ok()).collect::<Vec<_>>();
match valid_impls.as_slice() {
[] => {
let mut best_errors = usize::MAX;
let mut error_inputs = Vec::new();
for node_io in impls.keys() {
let current_errors = [&primary_input_or_call_argument]
.into_iter()
.chain(&inputs)
.cloned()
.zip([&node_io.call_argument].into_iter().chain(&node_io.inputs).cloned())
.enumerate()
.filter(|(_, (p1, p2))| !valid_type(p1, p2))
.map(|(index, ty)| {
let i = node.original_location.inputs(index).min_by_key(|s| s.node.len()).map(|s| s.index).unwrap_or(index);
let i = if using_manual_composition { i } else { i + 1 };
(i, ty)
})
.collect::<Vec<_>>();
if current_errors.len() < best_errors {
best_errors = current_errors.len();
error_inputs.clear();
}
if current_errors.len() <= best_errors {
error_inputs.push(current_errors);
}
}
let inputs = [&primary_input_or_call_argument]
.into_iter()
.chain(&inputs)
.enumerate()
// TODO: Make the following line's if statement conditional on being a call argument or primary input
.filter_map(|(i, t)| {
let i = if using_manual_composition { i } else { i + 1 };
if i == 0 { None } else { Some(format!("β’ Input {i}: {t}")) }
})
.collect::<Vec<_>>()
.join("\n");
Err(vec![GraphError::new(node, GraphErrorType::InvalidImplementations { inputs, error_inputs })])
}
[(node_io, org_nio)] => {
let node_io = node_io.clone();
// Save the inferred type
self.inferred.insert(node_id, node_io.clone());
self.constructor.insert(node_id, impls[org_nio]);
Ok(node_io)
}
// If two types are available and one of them accepts () an input, always choose that one
[first, second] => {
if first.0.call_argument != second.0.call_argument {
for (node_io, orig_nio) in [first, second] {
if node_io.call_argument != concrete!(()) {
continue;
}
// Save the inferred type
self.inferred.insert(node_id, node_io.clone());
self.constructor.insert(node_id, impls[orig_nio]);
return Ok(node_io.clone());
}
}
let inputs = [&primary_input_or_call_argument].into_iter().chain(&inputs).map(|t| t.to_string()).collect::<Vec<_>>().join(", ");
let valid = valid_output_types.into_iter().cloned().collect();
Err(vec![GraphError::new(node, GraphErrorType::MultipleImplementations { inputs, valid })])
}
_ => {
let inputs = [&primary_input_or_call_argument].into_iter().chain(&inputs).map(|t| t.to_string()).collect::<Vec<_>>().join(", ");
let valid = valid_output_types.into_iter().cloned().collect();
Err(vec![GraphError::new(node, GraphErrorType::MultipleImplementations { inputs, valid })])
}
}
}
}
/// Returns a list of all generic types used in the node
fn collect_generics(types: &NodeIOTypes) -> Vec<Cow<'static, str>> {
let inputs = [&types.call_argument].into_iter().chain(types.inputs.iter().map(|x| x.nested_type()));
let mut generics = inputs
.filter_map(|t| match t {
Type::Generic(out) => Some(out.clone()),
_ => None,
})
.collect::<Vec<_>>();
if let Type::Generic(out) = &types.return_value {
generics.push(out.clone());
}
generics.dedup();
generics
}
/// Checks if a generic type can be substituted with a concrete type and returns the concrete type
fn check_generic(types: &NodeIOTypes, input: &Type, parameters: &[Type], generic: &str) -> Result<Type, String> {
let inputs = [(Some(&types.call_argument), Some(input))]
.into_iter()
.chain(types.inputs.iter().map(|x| x.fn_input()).zip(parameters.iter().map(|x| x.fn_input())))
.chain(types.inputs.iter().map(|x| x.fn_output()).zip(parameters.iter().map(|x| x.fn_output())));
let concrete_inputs = inputs.filter(|(ni, _)| matches!(ni, Some(Type::Generic(input)) if generic == input));
let mut outputs = concrete_inputs.flat_map(|(_, out)| out);
let out_ty = outputs
.next()
.ok_or_else(|| format!("Generic output type {generic} is not dependent on input {input:?} or parameters {parameters:?}",))?;
if outputs.any(|ty| ty != out_ty) {
return Err(format!("Generic output type {generic} is dependent on multiple inputs or parameters",));
}
Ok(out_ty.clone())
}
/// Returns a list of all generic types used in the node
fn replace_generics(types: &mut NodeIOTypes, lookup: &HashMap<String, Type>) {
let replace = |ty: &Type| {
let Type::Generic(ident) = ty else {
return None;
};
lookup.get(ident.as_ref()).cloned()
};
types.call_argument.replace_nested(replace);
types.return_value.replace_nested(replace);
for input in &mut types.inputs {
input.replace_nested(replace);
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::proto::{ConstructionArgs, ProtoNetwork, ProtoNode, ProtoNodeInput};
#[test]
fn topological_sort() {
let construction_network = test_network();
let (sorted, _) = construction_network.topological_sort().expect("Error when calling 'topological_sort' on 'construction_network.");
let sorted: Vec<_> = sorted.iter().map(|x| construction_network.nodes[x.0 as usize].0).collect();
println!("{sorted:#?}");
assert_eq!(sorted, vec![NodeId(14), NodeId(10), NodeId(11), NodeId(1)]);
}
#[test]
fn topological_sort_with_cycles() {
let construction_network = test_network_with_cycles();
let sorted = construction_network.topological_sort();
assert!(sorted.is_err())
}
#[test]
fn id_reordering() {
let mut construction_network = test_network();
construction_network.reorder_ids().expect("Error when calling 'reorder_ids' on 'construction_network.");
let (sorted, _) = construction_network.topological_sort().expect("Error when calling 'topological_sort' on 'construction_network.");
let sorted: Vec<_> = sorted.iter().map(|x| construction_network.nodes[x.0 as usize].0).collect();
println!("nodes: {:#?}", construction_network.nodes);
assert_eq!(sorted, vec![NodeId(0), NodeId(1), NodeId(2), NodeId(3)]);
let ids: Vec<_> = construction_network.nodes.iter().map(|(id, _)| *id).collect();
println!("{ids:#?}");
println!("nodes: {:#?}", construction_network.nodes);
assert_eq!(construction_network.nodes[0].1.identifier.name.as_ref(), "value");
assert_eq!(ids, vec![NodeId(0), NodeId(1), NodeId(2), NodeId(3)]);
}
#[test]
fn id_reordering_idempotent() {
let mut construction_network = test_network();
construction_network.reorder_ids().expect("Error when calling 'reorder_ids' on 'construction_network.");
construction_network.reorder_ids().expect("Error when calling 'reorder_ids' on 'construction_network.");
let (sorted, _) = construction_network.topological_sort().expect("Error when calling 'topological_sort' on 'construction_network.");
assert_eq!(sorted, vec![NodeId(0), NodeId(1), NodeId(2), NodeId(3)]);
let ids: Vec<_> = construction_network.nodes.iter().map(|(id, _)| *id).collect();
println!("{ids:#?}");
assert_eq!(construction_network.nodes[0].1.identifier.name.as_ref(), "value");
assert_eq!(ids, vec![NodeId(0), NodeId(1), NodeId(2), NodeId(3)]);
}
#[test]
fn input_resolution() {
let mut construction_network = test_network();
construction_network.resolve_inputs().expect("Error when calling 'resolve_inputs' on 'construction_network.");
println!("{construction_network:#?}");
assert_eq!(construction_network.nodes[0].1.identifier.name.as_ref(), "value");
assert_eq!(construction_network.nodes.len(), 6);
assert_eq!(construction_network.nodes[5].1.construction_args, ConstructionArgs::Nodes(vec![(NodeId(3), false), (NodeId(4), true)]));
}
#[test]
fn stable_node_id_generation() {
let mut construction_network = test_network();
construction_network.resolve_inputs().expect("Error when calling 'resolve_inputs' on 'construction_network.");
construction_network.generate_stable_node_ids();
assert_eq!(construction_network.nodes[0].1.identifier.name.as_ref(), "value");
let ids: Vec<_> = construction_network.nodes.iter().map(|(id, _)| *id).collect();
assert_eq!(
ids,
vec![
NodeId(16997244687192517417),
NodeId(12226224850522777131),
NodeId(9162113827627229771),
NodeId(12793582657066318419),
NodeId(16945623684036608820),
NodeId(2640415155091892458)
]
);
}
fn test_network() -> ProtoNetwork {
ProtoNetwork {
inputs: vec![NodeId(10)],
output: NodeId(1),
nodes: [
(
NodeId(7),
ProtoNode {
identifier: "id".into(),
input: ProtoNodeInput::Node(NodeId(11)),
construction_args: ConstructionArgs::Nodes(vec![]),
..Default::default()
},
),
(
NodeId(1),
ProtoNode {
identifier: "id".into(),
input: ProtoNodeInput::Node(NodeId(11)),
construction_args: ConstructionArgs::Nodes(vec![]),
..Default::default()
},
),
(
NodeId(10),
ProtoNode {
identifier: "cons".into(),
input: ProtoNodeInput::ManualComposition(concrete!(u32)),
construction_args: ConstructionArgs::Nodes(vec![(NodeId(14), false)]),
..Default::default()
},
),
(
NodeId(11),
ProtoNode {
identifier: "add".into(),
input: ProtoNodeInput::Node(NodeId(10)),
construction_args: ConstructionArgs::Nodes(vec![]),
..Default::default()
},
),
(
NodeId(14),
ProtoNode {
identifier: "value".into(),
input: ProtoNodeInput::None,
construction_args: ConstructionArgs::Value(value::TaggedValue::U32(2).into()),
..Default::default()
},
),
]
.into_iter()
.collect(),
}
}
fn test_network_with_cycles() -> ProtoNetwork {
ProtoNetwork {
inputs: vec![NodeId(1)],
output: NodeId(1),
nodes: [
(
NodeId(1),
ProtoNode {
identifier: "id".into(),
input: ProtoNodeInput::Node(NodeId(2)),
construction_args: ConstructionArgs::Nodes(vec![]),
..Default::default()
},
),
(
NodeId(2),
ProtoNode {
identifier: "id".into(),
input: ProtoNodeInput::Node(NodeId(1)),
construction_args: ConstructionArgs::Nodes(vec![]),
..Default::default()
},
),
]
.into_iter()
.collect(),
}
}
}
|