File size: 40,389 Bytes
2409829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
use crate::document::{InlineRust, value};
use crate::document::{NodeId, OriginalLocation};
pub use graphene_core::registry::*;
use graphene_core::*;
use rustc_hash::FxHashMap;
use std::borrow::Cow;
use std::collections::{HashMap, HashSet};
use std::fmt::Debug;
use std::hash::Hash;

#[derive(Debug, Default, PartialEq, Clone, Hash, Eq, serde::Serialize, serde::Deserialize)]
/// A list of [`ProtoNode`]s, which is an intermediate step between the [`crate::document::NodeNetwork`] and the `BorrowTree` containing a single flattened network.
pub struct ProtoNetwork {
	// TODO: remove this since it seems to be unused?
	// Should a proto Network even allow inputs? Don't think so
	pub inputs: Vec<NodeId>,
	/// The node ID that provides the output. This node is then responsible for calling the rest of the graph.
	pub output: NodeId,
	/// A list of nodes stored in a Vec to allow for sorting.
	pub nodes: Vec<(NodeId, ProtoNode)>,
}

impl core::fmt::Display for ProtoNetwork {
	fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
		f.write_str("Proto Network with nodes: ")?;
		fn write_node(f: &mut core::fmt::Formatter<'_>, network: &ProtoNetwork, id: NodeId, indent: usize) -> core::fmt::Result {
			f.write_str(&"\t".repeat(indent))?;
			let Some((_, node)) = network.nodes.iter().find(|(node_id, _)| *node_id == id) else {
				return f.write_str("{{Unknown Node}}");
			};
			f.write_str("Node: ")?;
			f.write_str(&node.identifier.name)?;

			f.write_str("\n")?;
			f.write_str(&"\t".repeat(indent))?;
			f.write_str("{\n")?;

			f.write_str(&"\t".repeat(indent + 1))?;
			f.write_str("Input: ")?;
			match &node.input {
				ProtoNodeInput::None => f.write_str("None")?,
				ProtoNodeInput::ManualComposition(ty) => f.write_fmt(format_args!("Manual Composition (type = {ty:?})"))?,
				ProtoNodeInput::Node(_) => f.write_str("Node")?,
				ProtoNodeInput::NodeLambda(_) => f.write_str("Lambda Node")?,
			}
			f.write_str("\n")?;

			match &node.construction_args {
				ConstructionArgs::Value(value) => {
					f.write_str(&"\t".repeat(indent + 1))?;
					f.write_fmt(format_args!("Value construction argument: {value:?}"))?
				}
				ConstructionArgs::Nodes(nodes) => {
					for id in nodes {
						write_node(f, network, id.0, indent + 1)?;
					}
				}
				ConstructionArgs::Inline(inline) => {
					f.write_str(&"\t".repeat(indent + 1))?;
					f.write_fmt(format_args!("Inline construction argument: {inline:?}"))?
				}
			}
			f.write_str(&"\t".repeat(indent))?;
			f.write_str("}\n")?;
			Ok(())
		}

		let id = self.output;
		write_node(f, self, id, 0)
	}
}

#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
/// Defines the arguments used to construct the boxed node struct. This is used to call the constructor function in the `node_registry.rs` file - which is hidden behind a wall of macros.
pub enum ConstructionArgs {
	/// A value of a type that is known, allowing serialization (serde::Deserialize is not object safe)
	Value(MemoHash<value::TaggedValue>),
	/// A list of nodes used as inputs to the constructor function in `node_registry.rs`.
	/// The bool indicates whether to treat the node as lambda node.
	// TODO: use a struct for clearer naming.
	Nodes(Vec<(NodeId, bool)>),
	/// Used for GPU computation to work around the limitations of rust-gpu.
	Inline(InlineRust),
}

impl Eq for ConstructionArgs {}

impl PartialEq for ConstructionArgs {
	fn eq(&self, other: &Self) -> bool {
		match (&self, &other) {
			(Self::Nodes(n1), Self::Nodes(n2)) => n1 == n2,
			(Self::Value(v1), Self::Value(v2)) => v1 == v2,
			_ => {
				use std::hash::Hasher;
				let hash = |input: &Self| {
					let mut hasher = rustc_hash::FxHasher::default();
					input.hash(&mut hasher);
					hasher.finish()
				};
				hash(self) == hash(other)
			}
		}
	}
}

impl Hash for ConstructionArgs {
	fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
		core::mem::discriminant(self).hash(state);
		match self {
			Self::Nodes(nodes) => {
				for node in nodes {
					node.hash(state);
				}
			}
			Self::Value(value) => value.hash(state),
			Self::Inline(inline) => inline.hash(state),
		}
	}
}

impl ConstructionArgs {
	// TODO: what? Used in the gpu_compiler crate for something.
	pub fn new_function_args(&self) -> Vec<String> {
		match self {
			ConstructionArgs::Nodes(nodes) => nodes.iter().map(|(n, _)| format!("n{:0x}", n.0)).collect(),
			ConstructionArgs::Value(value) => vec![value.to_primitive_string()],
			ConstructionArgs::Inline(inline) => vec![inline.expr.clone()],
		}
	}
}

#[derive(Debug, Clone, PartialEq, Hash, Eq, serde::Serialize, serde::Deserialize)]
/// A proto node is an intermediate step between the `DocumentNode` and the boxed struct that actually runs the node (found in the [`BorrowTree`]).
/// At different stages in the compilation process, this struct will be transformed into a reduced (more restricted) form acting as a subset of its original form, but that restricted form is still valid in the earlier stage in the compilation process before it was transformed.
pub struct ProtoNode {
	pub construction_args: ConstructionArgs,
	pub input: ProtoNodeInput,
	pub identifier: ProtoNodeIdentifier,
	pub original_location: OriginalLocation,
	pub skip_deduplication: bool,
}

impl Default for ProtoNode {
	fn default() -> Self {
		Self {
			identifier: ProtoNodeIdentifier::new("graphene_core::ops::IdentityNode"),
			construction_args: ConstructionArgs::Value(value::TaggedValue::U32(0).into()),
			input: ProtoNodeInput::None,
			original_location: OriginalLocation::default(),
			skip_deduplication: false,
		}
	}
}

/// Similar to the document node's [`crate::document::NodeInput`].
#[derive(Debug, PartialEq, Eq, Clone, Hash, serde::Serialize, serde::Deserialize)]
pub enum ProtoNodeInput {
	/// This input will be converted to `()` as the call argument.
	None,
	/// A ManualComposition input represents an input that opts out of being resolved through the `ComposeNode`, which first runs the previous (upstream) node, then passes that evaluated
	/// result to this node. Instead, ManualComposition lets this node actually consume the provided input instead of passing it to its predecessor.
	///
	/// Say we have the network `a -> b -> c` where `c` is the output node and `a` is the input node.
	/// We would expect `a` to get input from the network, `b` to get input from `a`, and `c` to get input from `b`.
	/// This could be represented as `f(x) = c(b(a(x)))`. `a` is run with input `x` from the network. `b` is run with input from `a`. `c` is run with input from `b`.
	///
	/// However if `b`'s input is using manual composition, this means it would instead be `f(x) = c(b(x))`. This means that `b` actually gets input from the network, and `a` is not automatically
	/// executed as it would be using the default ComposeNode flow. Now `b` can use its own logic to decide when or if it wants to run `a` and how to use its output. For example, the CacheNode can
	/// look up `x` in its cache and return the result, or otherwise call `a`, cache the result, and return it.
	ManualComposition(Type),
	/// The previous node where automatic (not manual) composition occurs when compiled. The entire network, of which the node is the output, is fed as input.
	///
	/// Grayscale example:
	///
	/// We're interested in receiving an input of the desaturated image data which has been fed through a grayscale filter.
	/// (If we were interested in the grayscale filter itself, we would use the `NodeLambda` variant.)
	Node(NodeId),
	/// Unlike the `Node` variant, with `NodeLambda` we treat the connected node singularly as a lambda node while ignoring all nodes which feed into it from upstream.
	///
	/// Grayscale example:
	///
	/// We're interested in receiving an input of a particular image filter, such as a grayscale filter in the form of a grayscale node lambda.
	/// (If we were interested in some image data that had been fed through a grayscale filter, we would use the `Node` variant.)
	NodeLambda(NodeId),
}

impl ProtoNode {
	/// A stable node ID is a hash of a node that should stay constant. This is used in order to remove duplicates from the graph.
	/// In the case of `skip_deduplication`, the `document_node_path` is also hashed in order to avoid duplicate monitor nodes from being removed (which would make it impossible to load thumbnails).
	pub fn stable_node_id(&self) -> Option<NodeId> {
		use std::hash::Hasher;
		let mut hasher = rustc_hash::FxHasher::default();

		self.identifier.name.hash(&mut hasher);
		self.construction_args.hash(&mut hasher);
		if self.skip_deduplication {
			self.original_location.path.hash(&mut hasher);
		}

		std::mem::discriminant(&self.input).hash(&mut hasher);
		match self.input {
			ProtoNodeInput::None => (),
			ProtoNodeInput::ManualComposition(ref ty) => {
				ty.hash(&mut hasher);
			}
			ProtoNodeInput::Node(id) => (id, false).hash(&mut hasher),
			ProtoNodeInput::NodeLambda(id) => (id, true).hash(&mut hasher),
		};

		Some(NodeId(hasher.finish()))
	}

	/// Construct a new [`ProtoNode`] with the specified construction args and a `ClonedNode` implementation.
	pub fn value(value: ConstructionArgs, path: Vec<NodeId>) -> Self {
		let inputs_exposed = match &value {
			ConstructionArgs::Nodes(nodes) => nodes.len() + 1,
			_ => 2,
		};
		Self {
			identifier: ProtoNodeIdentifier::new("graphene_core::value::ClonedNode"),
			construction_args: value,
			input: ProtoNodeInput::ManualComposition(concrete!(Context)),
			original_location: OriginalLocation {
				path: Some(path),
				inputs_exposed: vec![false; inputs_exposed],
				..Default::default()
			},
			skip_deduplication: false,
		}
	}

	/// Converts all references to other node IDs into new IDs by running the specified function on them.
	/// This can be used when changing the IDs of the nodes, for example in the case of generating stable IDs.
	pub fn map_ids(&mut self, f: impl Fn(NodeId) -> NodeId, skip_lambdas: bool) {
		match self.input {
			ProtoNodeInput::Node(id) => self.input = ProtoNodeInput::Node(f(id)),
			ProtoNodeInput::NodeLambda(id) => {
				if !skip_lambdas {
					self.input = ProtoNodeInput::NodeLambda(f(id))
				}
			}
			_ => (),
		}

		if let ConstructionArgs::Nodes(ids) = &mut self.construction_args {
			ids.iter_mut().filter(|(_, lambda)| !(skip_lambdas && *lambda)).for_each(|(id, _)| *id = f(*id));
		}
	}

	pub fn unwrap_construction_nodes(&self) -> Vec<(NodeId, bool)> {
		match &self.construction_args {
			ConstructionArgs::Nodes(nodes) => nodes.clone(),
			_ => panic!("tried to unwrap nodes from non node construction args \n node: {self:#?}"),
		}
	}
}

#[derive(Clone, Copy, PartialEq)]
enum NodeState {
	Unvisited,
	Visiting,
	Visited,
}

impl ProtoNetwork {
	fn check_ref(&self, ref_id: &NodeId, id: &NodeId) {
		debug_assert!(
			self.nodes.iter().any(|(check_id, _)| check_id == ref_id),
			"Node id:{id} has a reference which uses node id:{ref_id} which doesn't exist in network {self:#?}"
		);
	}

	#[cfg(debug_assertions)]
	pub fn example() -> (Self, NodeId, ProtoNode) {
		let node_id = NodeId(1);
		let proto_node = ProtoNode::default();
		let proto_network = ProtoNetwork {
			inputs: vec![node_id],
			output: node_id,
			nodes: vec![(node_id, proto_node.clone())],
		};
		(proto_network, node_id, proto_node)
	}

	/// Construct a hashmap containing a list of the nodes that depend on this proto network.
	pub fn collect_outwards_edges(&self) -> HashMap<NodeId, Vec<NodeId>> {
		let mut edges: HashMap<NodeId, Vec<NodeId>> = HashMap::new();
		for (id, node) in &self.nodes {
			match &node.input {
				ProtoNodeInput::Node(ref_id) | ProtoNodeInput::NodeLambda(ref_id) => {
					self.check_ref(ref_id, id);
					edges.entry(*ref_id).or_default().push(*id)
				}
				_ => (),
			}

			if let ConstructionArgs::Nodes(ref_nodes) = &node.construction_args {
				for (ref_id, _) in ref_nodes {
					self.check_ref(ref_id, id);
					edges.entry(*ref_id).or_default().push(*id)
				}
			}
		}
		edges
	}

	/// Convert all node IDs to be stable (based on the hash generated by [`ProtoNode::stable_node_id`]).
	/// This function requires that the graph be topologically sorted.
	pub fn generate_stable_node_ids(&mut self) {
		debug_assert!(self.is_topologically_sorted());
		let outwards_edges = self.collect_outwards_edges();

		for index in 0..self.nodes.len() {
			let Some(sni) = self.nodes[index].1.stable_node_id() else {
				panic!("failed to generate stable node id for node {:#?}", self.nodes[index].1);
			};
			self.replace_node_id(&outwards_edges, NodeId(index as u64), sni, false);
			self.nodes[index].0 = sni;
		}
	}

	// TODO: Remove
	/// Create a hashmap with the list of nodes this proto network depends on/uses as inputs.
	pub fn collect_inwards_edges(&self) -> HashMap<NodeId, Vec<NodeId>> {
		let mut edges: HashMap<NodeId, Vec<NodeId>> = HashMap::new();
		for (id, node) in &self.nodes {
			match &node.input {
				ProtoNodeInput::Node(ref_id) | ProtoNodeInput::NodeLambda(ref_id) => {
					self.check_ref(ref_id, id);
					edges.entry(*id).or_default().push(*ref_id)
				}
				_ => (),
			}

			if let ConstructionArgs::Nodes(ref_nodes) = &node.construction_args {
				for (ref_id, _) in ref_nodes {
					self.check_ref(ref_id, id);
					edges.entry(*id).or_default().push(*ref_id)
				}
			}
		}
		edges
	}

	fn collect_inwards_edges_with_mapping(&self) -> (Vec<Vec<usize>>, FxHashMap<NodeId, usize>) {
		let id_map: FxHashMap<_, _> = self.nodes.iter().enumerate().map(|(idx, (id, _))| (*id, idx)).collect();

		// Collect inwards edges using dense indices
		let mut inwards_edges = vec![Vec::new(); self.nodes.len()];
		for (node_id, node) in &self.nodes {
			let node_index = id_map[node_id];
			match &node.input {
				ProtoNodeInput::Node(ref_id) | ProtoNodeInput::NodeLambda(ref_id) => {
					self.check_ref(ref_id, &NodeId(node_index as u64));
					inwards_edges[node_index].push(id_map[ref_id]);
				}
				_ => {}
			}

			if let ConstructionArgs::Nodes(ref_nodes) = &node.construction_args {
				for (ref_id, _) in ref_nodes {
					self.check_ref(ref_id, &NodeId(node_index as u64));
					inwards_edges[node_index].push(id_map[ref_id]);
				}
			}
		}

		(inwards_edges, id_map)
	}

	/// Inserts a [`structural::ComposeNode`] for each node that has a [`ProtoNodeInput::Node`]. The compose node evaluates the first node, and then sends the result into the second node.
	pub fn resolve_inputs(&mut self) -> Result<(), String> {
		// Perform topological sort once
		self.reorder_ids()?;

		let max_id = self.nodes.len() as u64 - 1;

		// Collect outward edges once
		let outwards_edges = self.collect_outwards_edges();

		// Iterate over nodes in topological order
		for node_id in 0..=max_id {
			let node_id = NodeId(node_id);

			let (_, node) = &mut self.nodes[node_id.0 as usize];

			if let ProtoNodeInput::Node(input_node_id) = node.input {
				// Create a new node that composes the current node and its input node
				let compose_node_id = NodeId(self.nodes.len() as u64);

				let (_, input_node_id_proto) = &self.nodes[input_node_id.0 as usize];

				let input = input_node_id_proto.input.clone();

				let mut path = input_node_id_proto.original_location.path.clone();
				if let Some(path) = &mut path {
					path.push(node_id);
				}

				self.nodes.push((
					compose_node_id,
					ProtoNode {
						identifier: ProtoNodeIdentifier::new("graphene_core::structural::ComposeNode"),
						construction_args: ConstructionArgs::Nodes(vec![(input_node_id, false), (node_id, true)]),
						input,
						original_location: OriginalLocation { path, ..Default::default() },
						skip_deduplication: false,
					},
				));

				self.replace_node_id(&outwards_edges, node_id, compose_node_id, true);
			}
		}
		self.reorder_ids()?;
		Ok(())
	}

	/// Update all of the references to a node ID in the graph with a new ID named `compose_node_id`.
	fn replace_node_id(&mut self, outwards_edges: &HashMap<NodeId, Vec<NodeId>>, node_id: NodeId, compose_node_id: NodeId, skip_lambdas: bool) {
		// Update references in other nodes to use the new compose node
		if let Some(referring_nodes) = outwards_edges.get(&node_id) {
			for &referring_node_id in referring_nodes {
				let (_, referring_node) = &mut self.nodes[referring_node_id.0 as usize];
				referring_node.map_ids(|id| if id == node_id { compose_node_id } else { id }, skip_lambdas)
			}
		}

		if self.output == node_id {
			self.output = compose_node_id;
		}

		self.inputs.iter_mut().for_each(|id| {
			if *id == node_id {
				*id = compose_node_id;
			}
		});
	}

	// Based on https://en.wikipedia.org/wiki/Topological_sorting#Depth-first_search
	// This approach excludes nodes that are not connected
	pub fn topological_sort(&self) -> Result<(Vec<NodeId>, FxHashMap<NodeId, usize>), String> {
		let (inwards_edges, id_map) = self.collect_inwards_edges_with_mapping();
		let mut sorted = Vec::with_capacity(self.nodes.len());
		let mut stack = vec![id_map[&self.output]];
		let mut state = vec![NodeState::Unvisited; self.nodes.len()];

		while let Some(&node_index) = stack.last() {
			match state[node_index] {
				NodeState::Unvisited => {
					state[node_index] = NodeState::Visiting;
					for &dep_index in inwards_edges[node_index].iter().rev() {
						match state[dep_index] {
							NodeState::Visiting => {
								return Err(format!("Cycle detected involving node {}", self.nodes[dep_index].0));
							}
							NodeState::Unvisited => {
								stack.push(dep_index);
							}
							NodeState::Visited => {}
						}
					}
				}
				NodeState::Visiting => {
					stack.pop();
					state[node_index] = NodeState::Visited;
					sorted.push(NodeId(node_index as u64));
				}
				NodeState::Visited => {
					stack.pop();
				}
			}
		}

		Ok((sorted, id_map))
	}

	fn is_topologically_sorted(&self) -> bool {
		let mut visited = HashSet::new();

		let inwards_edges = self.collect_inwards_edges();
		for (id, _) in &self.nodes {
			for &dependency in inwards_edges.get(id).unwrap_or(&Vec::new()) {
				if !visited.contains(&dependency) {
					dbg!(id, dependency);
					dbg!(&visited);
					dbg!(&self.nodes);
					return false;
				}
			}
			visited.insert(*id);
		}
		true
	}

	/// Sort the nodes vec so it is in a topological order. This ensures that no node takes an input from a node that is found later in the list.
	fn reorder_ids(&mut self) -> Result<(), String> {
		let (order, _id_map) = self.topological_sort()?;

		// // Map of node ids to their current index in the nodes vector
		// let current_positions: FxHashMap<_, _> = self.nodes.iter().enumerate().map(|(pos, (id, _))| (*id, pos)).collect();

		// // Map of node ids to their new index based on topological order
		let new_positions: FxHashMap<_, _> = order.iter().enumerate().map(|(pos, id)| (self.nodes[id.0 as usize].0, pos)).collect();
		// assert_eq!(id_map, current_positions);

		// Create a new nodes vector based on the topological order

		let mut new_nodes = Vec::with_capacity(order.len());
		for (index, &id) in order.iter().enumerate() {
			let mut node = std::mem::take(&mut self.nodes[id.0 as usize].1);
			// Update node references to reflect the new order
			node.map_ids(|id| NodeId(*new_positions.get(&id).expect("node not found in lookup table") as u64), false);
			new_nodes.push((NodeId(index as u64), node));
		}

		// Update node references to reflect the new order
		// new_nodes.iter_mut().for_each(|(_, node)| {
		// 	node.map_ids(|id| *new_positions.get(&id).expect("node not found in lookup table"), false);
		// });

		// Update the nodes vector and other references
		self.nodes = new_nodes;
		self.inputs = self.inputs.iter().filter_map(|id| new_positions.get(id).map(|x| NodeId(*x as u64))).collect();
		self.output = NodeId(*new_positions.get(&self.output).unwrap() as u64);

		assert_eq!(order.len(), self.nodes.len());
		Ok(())
	}
}
#[derive(Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub enum GraphErrorType {
	NodeNotFound(NodeId),
	InputNodeNotFound(NodeId),
	UnexpectedGenerics { index: usize, inputs: Vec<Type> },
	NoImplementations,
	NoConstructor,
	InvalidImplementations { inputs: String, error_inputs: Vec<Vec<(usize, (Type, Type))>> },
	MultipleImplementations { inputs: String, valid: Vec<NodeIOTypes> },
}
impl Debug for GraphErrorType {
	// TODO: format with the document graph context so the input index is the same as in the graph UI.
	fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
		match self {
			GraphErrorType::NodeNotFound(id) => write!(f, "Input node {id} is not present in the typing context"),
			GraphErrorType::InputNodeNotFound(id) => write!(f, "Input node {id} is not present in the typing context"),
			GraphErrorType::UnexpectedGenerics { index, inputs } => write!(f, "Generic inputs should not exist but found at {index}: {inputs:?}"),
			GraphErrorType::NoImplementations => write!(f, "No implementations found"),
			GraphErrorType::NoConstructor => write!(f, "No construct found for node"),
			GraphErrorType::InvalidImplementations { inputs, error_inputs } => {
				let format_error = |(index, (found, expected)): &(usize, (Type, Type))| {
					let index = index + 1;
					format!(
						"\
						β€’ Input {index}:\n\
						…found:       {found}\n\
						…expected: {expected}\
						"
					)
				};
				let format_error_list = |errors: &Vec<(usize, (Type, Type))>| errors.iter().map(format_error).collect::<Vec<_>>().join("\n");
				let mut errors = error_inputs.iter().map(format_error_list).collect::<Vec<_>>();
				errors.sort();
				let errors = errors.join("\n");
				let incompatibility = if errors.chars().filter(|&c| c == 'β€’').count() == 1 {
					"This input type is incompatible:"
				} else {
					"These input types are incompatible:"
				};

				write!(
					f,
					"\
					{incompatibility}\n\
					{errors}\n\
					\n\
					The node is currently receiving all of the following input types:\n\
					{inputs}\n\
					This is not a supported arrangement of types for the node.\
					"
				)
			}
			GraphErrorType::MultipleImplementations { inputs, valid } => write!(f, "Multiple implementations found ({inputs}):\n{valid:#?}"),
		}
	}
}
#[derive(Clone, PartialEq, serde::Serialize, serde::Deserialize)]
pub struct GraphError {
	pub node_path: Vec<NodeId>,
	pub identifier: Cow<'static, str>,
	pub error: GraphErrorType,
}
impl GraphError {
	pub fn new(node: &ProtoNode, text: impl Into<GraphErrorType>) -> Self {
		Self {
			node_path: node.original_location.path.clone().unwrap_or_default(),
			identifier: node.identifier.name.clone(),
			error: text.into(),
		}
	}
}
impl Debug for GraphError {
	fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
		f.debug_struct("NodeGraphError")
			.field("path", &self.node_path.iter().map(|id| id.0).collect::<Vec<_>>())
			.field("identifier", &self.identifier.to_string())
			.field("error", &self.error)
			.finish()
	}
}
pub type GraphErrors = Vec<GraphError>;

/// The `TypingContext` is used to store the types of the nodes indexed by their stable node id.
#[derive(Default, Clone, dyn_any::DynAny)]
pub struct TypingContext {
	lookup: Cow<'static, HashMap<ProtoNodeIdentifier, HashMap<NodeIOTypes, NodeConstructor>>>,
	inferred: HashMap<NodeId, NodeIOTypes>,
	constructor: HashMap<NodeId, NodeConstructor>,
}

impl TypingContext {
	/// Creates a new `TypingContext` with the given lookup table.
	pub fn new(lookup: &'static HashMap<ProtoNodeIdentifier, HashMap<NodeIOTypes, NodeConstructor>>) -> Self {
		Self {
			lookup: Cow::Borrowed(lookup),
			..Default::default()
		}
	}

	/// Updates the `TypingContext` with a given proto network. This will infer the types of the nodes
	/// and store them in the `inferred` field. The proto network has to be topologically sorted
	/// and contain fully resolved stable node ids.
	pub fn update(&mut self, network: &ProtoNetwork) -> Result<(), GraphErrors> {
		for (id, node) in network.nodes.iter() {
			self.infer(*id, node)?;
		}

		Ok(())
	}

	pub fn remove_inference(&mut self, node_id: NodeId) -> Option<NodeIOTypes> {
		self.constructor.remove(&node_id);
		self.inferred.remove(&node_id)
	}

	/// Returns the node constructor for a given node id.
	pub fn constructor(&self, node_id: NodeId) -> Option<NodeConstructor> {
		self.constructor.get(&node_id).copied()
	}

	/// Returns the type of a given node id if it exists
	pub fn type_of(&self, node_id: NodeId) -> Option<&NodeIOTypes> {
		self.inferred.get(&node_id)
	}

	/// Returns the inferred types for a given node id.
	pub fn infer(&mut self, node_id: NodeId, node: &ProtoNode) -> Result<NodeIOTypes, GraphErrors> {
		// Return the inferred type if it is already known
		if let Some(inferred) = self.inferred.get(&node_id) {
			return Ok(inferred.clone());
		}

		let inputs = match node.construction_args {
			// If the node has a value input we can infer the return type from it
			ConstructionArgs::Value(ref v) => {
				assert!(matches!(node.input, ProtoNodeInput::None) || matches!(node.input, ProtoNodeInput::ManualComposition(ref x) if x == &concrete!(Context)));
				// TODO: This should return a reference to the value
				let types = NodeIOTypes::new(concrete!(Context), Type::Future(Box::new(v.ty())), vec![]);
				self.inferred.insert(node_id, types.clone());
				return Ok(types);
			}
			// If the node has nodes as inputs we can infer the types from the node outputs
			ConstructionArgs::Nodes(ref nodes) => nodes
				.iter()
				.map(|(id, _)| {
					self.inferred
						.get(id)
						.ok_or_else(|| vec![GraphError::new(node, GraphErrorType::NodeNotFound(*id))])
						.map(|node| node.ty())
				})
				.collect::<Result<Vec<Type>, GraphErrors>>()?,
			ConstructionArgs::Inline(ref inline) => vec![inline.ty.clone()],
		};

		// Get the node input type from the proto node declaration
		// TODO: When removing automatic composition, rename this to just `call_argument`
		let primary_input_or_call_argument = match node.input {
			ProtoNodeInput::None => concrete!(()),
			ProtoNodeInput::ManualComposition(ref ty) => ty.clone(),
			ProtoNodeInput::Node(id) | ProtoNodeInput::NodeLambda(id) => {
				let input = self.inferred.get(&id).ok_or_else(|| vec![GraphError::new(node, GraphErrorType::InputNodeNotFound(id))])?;
				input.return_value.clone()
			}
		};
		let using_manual_composition = matches!(node.input, ProtoNodeInput::ManualComposition(_) | ProtoNodeInput::None);
		let impls = self.lookup.get(&node.identifier).ok_or_else(|| vec![GraphError::new(node, GraphErrorType::NoImplementations)])?;

		if let Some(index) = inputs.iter().position(|p| {
			matches!(p,
			Type::Fn(_, b) if matches!(b.as_ref(), Type::Generic(_)))
		}) {
			return Err(vec![GraphError::new(node, GraphErrorType::UnexpectedGenerics { index, inputs })]);
		}

		/// Checks if a proposed input to a particular (primary or secondary) input connector is valid for its type signature.
		/// `from` indicates the value given to a input, `to` indicates the input's allowed type as specified by its type signature.
		fn valid_type(from: &Type, to: &Type) -> bool {
			match (from, to) {
				// Direct comparison of two concrete types.
				(Type::Concrete(type1), Type::Concrete(type2)) => type1 == type2,
				// Check inner type for futures
				(Type::Future(type1), Type::Future(type2)) => valid_type(type1, type2),
				// Direct comparison of two function types.
				// Note: in the presence of subtyping, functions are considered on a "greater than or equal to" basis of its function type's generality.
				// That means we compare their types with a contravariant relationship, which means that a more general type signature may be substituted for a more specific type signature.
				// For example, we allow `T -> V` to be substituted with `T' -> V` or `() -> V` where T' and () are more specific than T.
				// This allows us to supply anything to a function that is satisfied with `()`.
				// In other words, we are implementing these two relations, where the >= operator means that the left side is more general than the right side:
				// - `T >= T' β‡’ (T' -> V) >= (T -> V)` (functions are contravariant in their input types)
				// - `V >= V' β‡’ (T -> V) >= (T -> V')` (functions are covariant in their output types)
				// While these two relations aren't a truth about the universe, they are a design decision that we are employing in our language design that is also common in other languages.
				// For example, Rust implements these same relations as it describes here: <https://doc.rust-lang.org/nomicon/subtyping.html>
				// Graphite doesn't have subtyping currently, but it used to have it, and may do so again, so we make sure to compare types in this way to make things easier.
				// More details explained here: <https://github.com/GraphiteEditor/Graphite/issues/1741>
				(Type::Fn(in1, out1), Type::Fn(in2, out2)) => valid_type(out2, out1) && valid_type(in1, in2),
				// If either the proposed input or the allowed input are generic, we allow the substitution (meaning this is a valid subtype).
				// TODO: Add proper generic counting which is not based on the name
				(Type::Generic(_), _) | (_, Type::Generic(_)) => true,
				// Reject unknown type relationships.
				_ => false,
			}
		}

		// List of all implementations that match the input types
		let valid_output_types = impls
			.keys()
			.filter(|node_io| valid_type(&node_io.call_argument, &primary_input_or_call_argument) && inputs.iter().zip(node_io.inputs.iter()).all(|(p1, p2)| valid_type(p1, p2)))
			.collect::<Vec<_>>();

		// Attempt to substitute generic types with concrete types and save the list of results
		let substitution_results = valid_output_types
			.iter()
			.map(|node_io| {
				let generics_lookup: Result<HashMap<_, _>, _> = collect_generics(node_io)
					.iter()
					.map(|generic| check_generic(node_io, &primary_input_or_call_argument, &inputs, generic).map(|x| (generic.to_string(), x)))
					.collect();

				generics_lookup.map(|generics_lookup| {
					let orig_node_io = (*node_io).clone();
					let mut new_node_io = orig_node_io.clone();
					replace_generics(&mut new_node_io, &generics_lookup);
					(new_node_io, orig_node_io)
				})
			})
			.collect::<Vec<_>>();

		// Collect all substitutions that are valid
		let valid_impls = substitution_results.iter().filter_map(|result| result.as_ref().ok()).collect::<Vec<_>>();

		match valid_impls.as_slice() {
			[] => {
				let mut best_errors = usize::MAX;
				let mut error_inputs = Vec::new();
				for node_io in impls.keys() {
					let current_errors = [&primary_input_or_call_argument]
						.into_iter()
						.chain(&inputs)
						.cloned()
						.zip([&node_io.call_argument].into_iter().chain(&node_io.inputs).cloned())
						.enumerate()
						.filter(|(_, (p1, p2))| !valid_type(p1, p2))
						.map(|(index, ty)| {
							let i = node.original_location.inputs(index).min_by_key(|s| s.node.len()).map(|s| s.index).unwrap_or(index);
							let i = if using_manual_composition { i } else { i + 1 };
							(i, ty)
						})
						.collect::<Vec<_>>();
					if current_errors.len() < best_errors {
						best_errors = current_errors.len();
						error_inputs.clear();
					}
					if current_errors.len() <= best_errors {
						error_inputs.push(current_errors);
					}
				}
				let inputs = [&primary_input_or_call_argument]
					.into_iter()
					.chain(&inputs)
					.enumerate()
					// TODO: Make the following line's if statement conditional on being a call argument or primary input
					.filter_map(|(i, t)| {
						let i = if using_manual_composition { i } else { i + 1 };
						if i == 0 { None } else { Some(format!("β€’ Input {i}: {t}")) }
					})
					.collect::<Vec<_>>()
					.join("\n");
				Err(vec![GraphError::new(node, GraphErrorType::InvalidImplementations { inputs, error_inputs })])
			}
			[(node_io, org_nio)] => {
				let node_io = node_io.clone();

				// Save the inferred type
				self.inferred.insert(node_id, node_io.clone());
				self.constructor.insert(node_id, impls[org_nio]);
				Ok(node_io)
			}
			// If two types are available and one of them accepts () an input, always choose that one
			[first, second] => {
				if first.0.call_argument != second.0.call_argument {
					for (node_io, orig_nio) in [first, second] {
						if node_io.call_argument != concrete!(()) {
							continue;
						}

						// Save the inferred type
						self.inferred.insert(node_id, node_io.clone());
						self.constructor.insert(node_id, impls[orig_nio]);
						return Ok(node_io.clone());
					}
				}
				let inputs = [&primary_input_or_call_argument].into_iter().chain(&inputs).map(|t| t.to_string()).collect::<Vec<_>>().join(", ");
				let valid = valid_output_types.into_iter().cloned().collect();
				Err(vec![GraphError::new(node, GraphErrorType::MultipleImplementations { inputs, valid })])
			}

			_ => {
				let inputs = [&primary_input_or_call_argument].into_iter().chain(&inputs).map(|t| t.to_string()).collect::<Vec<_>>().join(", ");
				let valid = valid_output_types.into_iter().cloned().collect();
				Err(vec![GraphError::new(node, GraphErrorType::MultipleImplementations { inputs, valid })])
			}
		}
	}
}

/// Returns a list of all generic types used in the node
fn collect_generics(types: &NodeIOTypes) -> Vec<Cow<'static, str>> {
	let inputs = [&types.call_argument].into_iter().chain(types.inputs.iter().map(|x| x.nested_type()));
	let mut generics = inputs
		.filter_map(|t| match t {
			Type::Generic(out) => Some(out.clone()),
			_ => None,
		})
		.collect::<Vec<_>>();
	if let Type::Generic(out) = &types.return_value {
		generics.push(out.clone());
	}
	generics.dedup();
	generics
}

/// Checks if a generic type can be substituted with a concrete type and returns the concrete type
fn check_generic(types: &NodeIOTypes, input: &Type, parameters: &[Type], generic: &str) -> Result<Type, String> {
	let inputs = [(Some(&types.call_argument), Some(input))]
		.into_iter()
		.chain(types.inputs.iter().map(|x| x.fn_input()).zip(parameters.iter().map(|x| x.fn_input())))
		.chain(types.inputs.iter().map(|x| x.fn_output()).zip(parameters.iter().map(|x| x.fn_output())));
	let concrete_inputs = inputs.filter(|(ni, _)| matches!(ni, Some(Type::Generic(input)) if generic == input));
	let mut outputs = concrete_inputs.flat_map(|(_, out)| out);
	let out_ty = outputs
		.next()
		.ok_or_else(|| format!("Generic output type {generic} is not dependent on input {input:?} or parameters {parameters:?}",))?;
	if outputs.any(|ty| ty != out_ty) {
		return Err(format!("Generic output type {generic} is dependent on multiple inputs or parameters",));
	}
	Ok(out_ty.clone())
}

/// Returns a list of all generic types used in the node
fn replace_generics(types: &mut NodeIOTypes, lookup: &HashMap<String, Type>) {
	let replace = |ty: &Type| {
		let Type::Generic(ident) = ty else {
			return None;
		};
		lookup.get(ident.as_ref()).cloned()
	};
	types.call_argument.replace_nested(replace);
	types.return_value.replace_nested(replace);
	for input in &mut types.inputs {
		input.replace_nested(replace);
	}
}

#[cfg(test)]
mod test {
	use super::*;
	use crate::proto::{ConstructionArgs, ProtoNetwork, ProtoNode, ProtoNodeInput};

	#[test]
	fn topological_sort() {
		let construction_network = test_network();
		let (sorted, _) = construction_network.topological_sort().expect("Error when calling 'topological_sort' on 'construction_network.");
		let sorted: Vec<_> = sorted.iter().map(|x| construction_network.nodes[x.0 as usize].0).collect();
		println!("{sorted:#?}");
		assert_eq!(sorted, vec![NodeId(14), NodeId(10), NodeId(11), NodeId(1)]);
	}

	#[test]
	fn topological_sort_with_cycles() {
		let construction_network = test_network_with_cycles();
		let sorted = construction_network.topological_sort();

		assert!(sorted.is_err())
	}

	#[test]
	fn id_reordering() {
		let mut construction_network = test_network();
		construction_network.reorder_ids().expect("Error when calling 'reorder_ids' on 'construction_network.");
		let (sorted, _) = construction_network.topological_sort().expect("Error when calling 'topological_sort' on 'construction_network.");
		let sorted: Vec<_> = sorted.iter().map(|x| construction_network.nodes[x.0 as usize].0).collect();
		println!("nodes: {:#?}", construction_network.nodes);
		assert_eq!(sorted, vec![NodeId(0), NodeId(1), NodeId(2), NodeId(3)]);
		let ids: Vec<_> = construction_network.nodes.iter().map(|(id, _)| *id).collect();
		println!("{ids:#?}");
		println!("nodes: {:#?}", construction_network.nodes);
		assert_eq!(construction_network.nodes[0].1.identifier.name.as_ref(), "value");
		assert_eq!(ids, vec![NodeId(0), NodeId(1), NodeId(2), NodeId(3)]);
	}

	#[test]
	fn id_reordering_idempotent() {
		let mut construction_network = test_network();
		construction_network.reorder_ids().expect("Error when calling 'reorder_ids' on 'construction_network.");
		construction_network.reorder_ids().expect("Error when calling 'reorder_ids' on 'construction_network.");
		let (sorted, _) = construction_network.topological_sort().expect("Error when calling 'topological_sort' on 'construction_network.");
		assert_eq!(sorted, vec![NodeId(0), NodeId(1), NodeId(2), NodeId(3)]);
		let ids: Vec<_> = construction_network.nodes.iter().map(|(id, _)| *id).collect();
		println!("{ids:#?}");
		assert_eq!(construction_network.nodes[0].1.identifier.name.as_ref(), "value");
		assert_eq!(ids, vec![NodeId(0), NodeId(1), NodeId(2), NodeId(3)]);
	}

	#[test]
	fn input_resolution() {
		let mut construction_network = test_network();
		construction_network.resolve_inputs().expect("Error when calling 'resolve_inputs' on 'construction_network.");
		println!("{construction_network:#?}");
		assert_eq!(construction_network.nodes[0].1.identifier.name.as_ref(), "value");
		assert_eq!(construction_network.nodes.len(), 6);
		assert_eq!(construction_network.nodes[5].1.construction_args, ConstructionArgs::Nodes(vec![(NodeId(3), false), (NodeId(4), true)]));
	}

	#[test]
	fn stable_node_id_generation() {
		let mut construction_network = test_network();
		construction_network.resolve_inputs().expect("Error when calling 'resolve_inputs' on 'construction_network.");
		construction_network.generate_stable_node_ids();
		assert_eq!(construction_network.nodes[0].1.identifier.name.as_ref(), "value");
		let ids: Vec<_> = construction_network.nodes.iter().map(|(id, _)| *id).collect();
		assert_eq!(
			ids,
			vec![
				NodeId(16997244687192517417),
				NodeId(12226224850522777131),
				NodeId(9162113827627229771),
				NodeId(12793582657066318419),
				NodeId(16945623684036608820),
				NodeId(2640415155091892458)
			]
		);
	}

	fn test_network() -> ProtoNetwork {
		ProtoNetwork {
			inputs: vec![NodeId(10)],
			output: NodeId(1),
			nodes: [
				(
					NodeId(7),
					ProtoNode {
						identifier: "id".into(),
						input: ProtoNodeInput::Node(NodeId(11)),
						construction_args: ConstructionArgs::Nodes(vec![]),
						..Default::default()
					},
				),
				(
					NodeId(1),
					ProtoNode {
						identifier: "id".into(),
						input: ProtoNodeInput::Node(NodeId(11)),
						construction_args: ConstructionArgs::Nodes(vec![]),
						..Default::default()
					},
				),
				(
					NodeId(10),
					ProtoNode {
						identifier: "cons".into(),
						input: ProtoNodeInput::ManualComposition(concrete!(u32)),
						construction_args: ConstructionArgs::Nodes(vec![(NodeId(14), false)]),
						..Default::default()
					},
				),
				(
					NodeId(11),
					ProtoNode {
						identifier: "add".into(),
						input: ProtoNodeInput::Node(NodeId(10)),
						construction_args: ConstructionArgs::Nodes(vec![]),
						..Default::default()
					},
				),
				(
					NodeId(14),
					ProtoNode {
						identifier: "value".into(),
						input: ProtoNodeInput::None,
						construction_args: ConstructionArgs::Value(value::TaggedValue::U32(2).into()),
						..Default::default()
					},
				),
			]
			.into_iter()
			.collect(),
		}
	}

	fn test_network_with_cycles() -> ProtoNetwork {
		ProtoNetwork {
			inputs: vec![NodeId(1)],
			output: NodeId(1),
			nodes: [
				(
					NodeId(1),
					ProtoNode {
						identifier: "id".into(),
						input: ProtoNodeInput::Node(NodeId(2)),
						construction_args: ConstructionArgs::Nodes(vec![]),
						..Default::default()
					},
				),
				(
					NodeId(2),
					ProtoNode {
						identifier: "id".into(),
						input: ProtoNodeInput::Node(NodeId(1)),
						construction_args: ConstructionArgs::Nodes(vec![]),
						..Default::default()
					},
				),
			]
			.into_iter()
			.collect(),
		}
	}
}